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e Learning systems at equilibrium: estimate the probability p(x)

p(z)=Z"1e V@ for x e RY
Curse of dimensionality if d > 1.
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Does it memorise or generalise 7

How does it circumvent the curse 7
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e The inverse transport is learned from data. What transport 7

- Al score diffusion generation (2020): along noise variance

- Physics Wilson renormalisation group (1970): along scales
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- Yang Song et. al.
e Forward diffusion: add noise with Ornstein-Uhlenbeck equation

Inverse
Forward

e The diffusion is inverted with a damped-Langevin equation:

dZCT_t — (Q?T_t -+ 2V long_t(Q?T_t)) dt -+ \/idBt

e The score V log p; is estimated with a deep neural network.
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Score Estimation by Denoising 5

weights layer 1 weights
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Trained by minimising E,. (|| — z||?) on the training set

T = T + noise

Tweetie, Robbins, Myasawa formula for the optimal z:

T —
Vlogpt(l’t) — 5 t
o

Does it really work 7 Why 7



from large databases with /N examples of images
with score based diffusions.

Does it learn an underlying probability distribution 7
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Images reconstructed from the same noise with 2 scores
estimated from 2 different train sets S; and S5
of N images of 80 x 80 pixels
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Generalises or Memorises ?

Images reconstructed from the same noise with 2 scores
estimated from 2 different train sets S; and S5
of N images of 80 x 80 pixels

(zeneralises!
N=10 N=100 N=1000  N=10000 N=100000
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from S5



Generalisation Test
" /. Kadkhodaie, F. Guth, S.M., E. Stmoncells

Images reconstructed from the same noise with 2 scores
estimated from 2 different train sets S7 and S5
of NV images of 80 x 80 pixels

N = 100,000
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The estimation variance is small for IV large enough



Images reconstructed from the same noise with 2 scores
estimated from 2 different train sets S; and S5

of NV images of 80 x 80 pixels Generalises!

N=100 N=1000 N=10000 N=100000
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The number N for generalisation depends on the number of

parameters of the network.

(zeneralises!
N=10000 N=100000

Closest
in S 1

Synthesized
from S 1

Synthesized
from S5

Closest
in S 2




2. High Dimensional Models

e Score diffusion generalises with enough training examples
e Generalisation depends upon the number of network parameters

e Circumvents the curse of dimensionality: how ?
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e Score diffusion generalises with enough training examples
e Generalisation depends upon the number of network parameters

e Circumvents the curse of dimensionality: how ?

Can we build accurate models with fewer examples 7

Open the black box

1 16 16 16 16 1

i

128 x 128 x 32

=) Conv + BN + LRelU

=) Conv_stride2 + BN + LRelLU
=) Deconv + Upsampling

P> Copy and add

v scale
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e Score diffusion generalises with enough training examples
e Generalisation depends upon the number of network parameters

e Circumvents the curse of dimensionality: how ?

Can we build accurate models with fewer examples 7

Open the black box

1 16 16 16 16 1
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=) Conv + BN + LRelU
=) Conv_stride2 + BN + LRelLU

256 x 256 x 64

~
M
0
=
oo
~
-

=) Deconv + Upsampling
D> Copy and add

v scale

How to capture an image geometry 7

Can we model physical turbulences 7
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Kadanoff, Wilson 1970

Probability transport across scales

Inverse Markov chain
pj—1(wj—1) = pj(z;) pj(xj_1]z;)

(. Biroli, E. Lempereur
T. Marchand, M. Ozawa, S. M.

Wilson:
Easier to estimate ﬁj(a?j—1|$j)

than directly p;_q(z;_1)

scale

low

g . PJ : easy to estimate and sample
imension



pj(rj—1|Tj) = pj(Tj|z;)

Local conditional dependencies over wavelet coeflicients.
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Hierarchic Sampling
T. Marchand, M. Ozawa, G. Biroli, S. M.

p(z) = p(zy) [T, p;(T5]z;)
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ﬁ\- - Hierarchic Sampling -

T. Marchand, M. Ozawa, G. Biroli, S. M.

p(z) = p(zy) [T, p;(T5]z;)
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sample p; (fj K j)
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E. Allys, S. Cheng, E. Lempereur, B. Ménard, R. Morel, S. M.




\ & eneration from Scattering Models

E. Allys, S. Cheng, E. Lempereur, B. Ménard, R. Morel, S. M.

Original images of dimension d = 5104

. N'SWle iFeeadl Do ETONEn e B OF
Generated with models having 500 parameters
Reproduces moments of order 3 (bispectrum) and 4 (trispectrum)
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e Neural network score generation do generalise: they do not just
memorise 1f the data set 1s large enough: very large...

e Hierarchical organisations reduce the curse of dimensionality
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e Neural network score generation do generalise: they do not just
memorise 1f the data set 1s large enough: very large...
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Conclusion

e Hierarchical organisations reduce the curse of dimensionality

e Learning the geometry of complex physics 1s possible with much
fewer parameters, within the renormalisation group framework.



