De l'IA Générative à la Physique Statistique

ENS

S. Mallat

Collège de France École Normale Supérieure

Learning Physics and Image Generation

• Learning systems at equilibrium: estimate the probability p(x)

$$p(x) = \mathcal{Z}^{-1} e^{-U(x)}$$
 for $x \in \mathbb{R}^d$

Curse of dimensionality if $d \gg 1$.

Statistical physics

Cosmic web Turbulences long-range geometry since 1940's

Learning Physics and Image Generation

• Learning systems at equilibrium: estimate the probability p(x)

$$p(x) = \mathcal{Z}^{-1} e^{-U(x)}$$
 for $x \in \mathbb{R}^d$

Curse of dimensionality if $d \gg 1$.

Statistical physics Image generation by score denoising

• Define a transport from p to a simple p_T

COLLÈGE DE FRANCE

Transport of Probabilities

- Define a transport from p to a simple p_T
 - Learn the inverse transport from data

COLLÈGE DE FRANCE

Transport of Probabilities

- Define a transport from p to a simple p_T
 - Learn the inverse transport from data

OLLÈGF

- The inverse transport is learned from data. What transport ?
 - AI score diffusion generation (2020): along noise variance
 - Physics Wilson renormalisation group (1970): along scales

• Forward diffusion: add noise with Ornstein-Uhlenbeck equation

Forward

• Forward diffusion: add noise with Ornstein-Uhlenbeck equation

• The diffusion is inverted with a damped-Langevin equation:

$$dx_{T-t} = (x_{T-t} + 2\nabla \log p_{T-t}(x_{T-t})) dt + \sqrt{2}dB_t$$

• Forward diffusion: add noise with Ornstein-Uhlenbeck equation

• The diffusion is inverted with a damped-Langevin equation:

$$dx_{T-t} = (x_{T-t} + 2\nabla \log p_{T-t}(x_{T-t})) dt + \sqrt{2}dB_t$$

• The score $\nabla \log p_t$ is estimated with a deep neural network.

Trained by minimising $\mathbb{E}_{x_t}(\|\hat{x} - x\|^2)$ on the training set

Trained by minimising $\mathbb{E}_{x_t}(\|\hat{x} - x\|^2)$ on the training set Tweetie, Robbins, Myasawa formula for the optimal \hat{x} :

$$\nabla \log p_t(x_t) = \frac{\hat{x} - x_t}{\sigma_t^2}.$$

Does it really work? Why?

from large databases with N examples of images

Does it learn an underlying probability distribution ?

Generalises or Memorises ? Images reconstructed from the same noise with 2 scores estimated from 2 different train sets S_1 and S_2 of N images of 80×80 pixels

N=1Closest in S_1 Synthesized from S_1 Synthesized from S_2 Closest in S_2

Images reconstructed from the same noise with 2 scores estimated from 2 different train sets S_1 and S_2 of N images of 80×80 pixels

Generalises or Memorises ?

Images reconstructed from the same noise with 2 scores estimated from 2 different train sets S_1 and S_2 of N images of 80×80 pixels

N=1

N = 10

Synthesized from S_1

Closest in S_2

Generalises or Memorises ? Images reconstructed from the same noise with 2 scores

estimated from 2 different train sets S_1 and S_2

of N images of 80×80 pixels

Generalisation Test

Z. Kadkhodaie, F. Guth, S.M., E. Simoncelli

Images reconstructed from the same noise with 2 scores estimated from 2 different train sets S_1 and S_2 of N images of 80×80 pixels

N = 100,000

The estimation variance is small for N large enough

EXAMPLE 7 Generalisation Test: Memorise ? Images reconstructed from the same noise with 2 scores estimated from 2 different train sets S_1 and S_2 of N images of 80×80 pixels Generalises!

Generalisation Test: Memorise ?

The number N for generalisation depends on the number of parameters of the network.

2. High Dimensional Models

- Score diffusion generalises with enough training examples
- Generalisation depends upon the number of network parameters
- Circumvents the curse of dimensionality: how ?

2. High Dimensional Models

- Score diffusion generalises with enough training examples
- Generalisation depends upon the number of network parameters
- Circumvents the curse of dimensionality: how ?

Can we build accurate models with fewer examples ?

2. High Dimensional Models

- Score diffusion generalises with enough training examples
- Generalisation depends upon the number of network parameters
- Circumvents the curse of dimensionality: how ?

Can we build accurate models with fewer examples ?

How to capture an image geometry ? Can we model physical turbulences ?

 x_J dimension

Renormalisation Group : Hierachy

Kadanoff, Wilson 1970

p

 p_{j-1}

 \bar{p}_j

 p_j

high

dimension

 \mathcal{X}

 x_{j-1}

 x_{j}

x

scale

low

dimension

Probability transport across scales

Inverse Markov chain

 $p_{j-1}(x_{j-1}) = p_j(x_j) \, \bar{p}_j(x_{j-1}|x_j)$

G. Biroli, E. Lempereur T. Marchand, M. Ozawa, S. M.

 p_J : easy to estimate and sample

Renormalisation Group: Hierachy

Kadanoff, Wilson 1970

p

 p_{j-1}

 \bar{p}_j

 p_j

high

dimension

 \mathcal{X}

 x_{j-1}

 x_{j}

x

scale

low

dimension

Probability transport across scales

Inverse Markov chain

 $p_{j-1}(x_{j-1}) = p_j(x_j) \, \bar{p}_j(x_{j-1}|x_j)$

G. Biroli, E. Lempereur T. Marchand, M. Ozawa, S. M.

Wilson: Easier to estimate $\bar{p}_j(x_{j-1}|x_j)$ than directly $p_{j-1}(x_{j-1})$

 p_J : easy to estimate and sample

Transition Probabilities Across Scales

Wavelet orthogonal basis : $x_{j-1} \leftrightarrow (x_j, \bar{x}_j)$

$\bar{p}_j(x_{j-1}|x_j) = \bar{p}_j(\bar{x}_j|x_j)$

Local conditional dependencies over wavelet coefficients.

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

T. Marchand, M. Ozawa, G. Biroli, S. M.

$p(x) = p(x_J) \prod_{j=1}^J \bar{p}_j(\overline{x}_j | x_j)$

 $p(x) = p(x_J) \prod_{j=1}^{J} \bar{p}_j(\overline{x}_j | x_j)$

T. Marchand, M. Ozawa, G. Biroli, S. M.

 \sim U-Net. right branch

 $p(x) = p(x_J) \prod_{j=1}^J \bar{p}_j(\overline{x}_j | x_j)$

 \mathcal{X}

Generation from Scattering Models

E. Allys, S. Cheng, E. Lempereur, B. Ménard, R. Morel, S. M. Original images of dimension $d = 5 \, 10^4$

Generation from Scattering Models

E. Allys, S. Cheng, E. Lempereur, B. Ménard, R. Morel, S. M. Original images of dimension $d = 5 \, 10^4$

Generated with models having 500 parameters Reproduces moments of order 3 (bispectrum) and 4 (trispectrum)

- Neural network score generation do generalise: they do not just memorise if the data set is large enough: very large...
- Hierarchical organisations reduce the curse of dimensionality

- Neural network score generation do generalise: they do not just memorise if the data set is large enough: very large...
- Hierarchical organisations reduce the curse of dimensionality

- Neural network score generation do generalise: they do not just memorise if the data set is large enough: very large...
- Hierarchical organisations reduce the curse of dimensionality
- Learning the geometry of complex physics is possible with much fewer parameters, within the renormalisation group framework.