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Two strategies to obtain controlled fusion reactions in a lab: inertial fusion vs magnetic fusion

To sustain a plasma without external heating (Pr,s = Pjoss), One needs to fullfil the Lawson criterion
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Ignition obtained for the first time! Py_;.qys < Prys
[H. Abu-Shawareb, PRL 2022]
* Historical physics result!
* But still far from Electricity production
Prys ™ Prasers << Pyriq + low repetition rate
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ITER project

One of the largest scientific project of mankind history

International project: China, India, Japan, Korea, Russia, UE, USA
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Success of fusion requires understanding and prediction
of transport in tokamaks

ITER project

To optimize performance and minimize risks, each ITER scenario will have to be numerically validated.

A complete chain of numerical tools will be required, ranging from scale models, which can be used in
real time, to first-principles simulations, which are more costly but more reliable.

Turbulent transport mainly governs confinement in Tokamaks

Tokamak plasmas weakly collisional = Kinetic approach mandatory

o Fusion plasma turbulence is low frequency = fast gyro-motion is averaged out

o Gyrokinetic approach: phase space reduction from 6D to 5D
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The GYSELA code

- GYSELA is the unique gyrokinetic code based on a semi-Lagrangian scheme

- Fortran 90 + few C modules with hybrid MPI/OpenMP parallelisation optimized up for up to 750,000 cores

- Development in strong collaboration between physicists, mathematicians and computer scientists

- Ex: SELALIB software library = joint effort INRIA Project Lab FRATRES - CEA/IRFM — MINGUS (INRIA/Rennes) and

TONUS (INRIA/Strasbourg) + Max-Planck-Institut fir Plasmaphysic (IPP/Garching) started in 2011.
—> SELALIB modules recently successfully coupled to GYSELA [Emily Bourne, PhD 2022]

International
collaboration
France +
Switzerland+
Germany +

ssssssssss
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Improvements of the physics model in the last 10 years
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Electrons: from adiabatic response (not simulated) to kinetic
[C. Ehrlacher 2018, V. Grandgirard 2019]

r 0.025

« Simulation of impurities (= minority ion species)
[D. Estéve 2018, P. Donnel 2019, K. Lim 2023]
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 Geometry: from circular to shaped plasmas + ripple
[Bourne 2023, R. Varennes 2023, PhD L. De Gianni 2023-2026]
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* Boundary conditions: from simple buffer to more realistic immersed boundaries
[E. Caschera 2018, Dif-Pradalier 2022, PhD Y. Munschy 2021-2024]

* From electrostatic (constant magnetic field) to electromagnetic
[PhD C. Gillot 2017-2020, PhD R. Bigué 2023-2026]

 More complex operators: collisions, sources...
[P. Donnel 2018, G. Lo-Cascio 2022]
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Need for constant code optimization to partly compensate for the increased
complexity of the physics + adapation to new architectures

Performance gains in GYSELA (Marconi, 384 MPI x 24 OMP)

Numerical improvements in 2021-2022
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Need for Exascale computing to simulate ITER

 The dominant transport in tokamaks is related to electromagnetic turbulence. A first principle code is intrinsically
multi-scale as it needs to solve simultaneously small scale turbulence and large scale evolution of the plasma

e Spatial scale

:

mkpT
eB

o Turbulent structures proportionnal to the ion Larmor radius p; =
o Size of plasma ‘@’
o The grid resolution scales as p; *where p, = %. WEST: p; ! = 250, ITER: p;1 = 1000

> Grid resolution needs to be increase by a factor ~ 16 from WEST (~10*1points) to ITER (~1.6 * 102 points)

 Temporal resolution

L : B
o Correlation time of turbulence proportionnal to {},; = %

o Confinement time of the plasma scales as number of iterations = Tz Q.;Xp; ?(pessimistic) or p; 3(optimistic)
» Number of iterations increased by a factor 16 to 64 from WEST to ITER

e Well resolved simulations of WEST ~ 10 millions of CPU hours = impossible to simulate ITER with current code&
HPC
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Roadmap for Gysela-X++ towards exascale
- Why do we choose to rewrite GYSELA ?

« Gysela-X++ = GYSELA in modern C++ with X-point for exascale ITER core-edge turbulence S|mulat|ons
(+ 3D via BPI / Renaissance Fusion)

o Rewritting of the code in modern C++ with MPI + Kokkos
> Portable code on new exascale architectures
o Non-uniform meshes
> relevant density & temperature gradients at edge-SOL
o Semi-Lagrangian scheme for multi-patches
> X-point geometry
o Implementation of a 3D scalable Poisson solver
> X-point configuration + stellarator configuration
o Scalable I/O and in-situ diagnostics

m Development of the new code supported by multiple projects/collab. Lo

= National projects: Moonshot CExA (2023-2025), PTC Dose (2023-2024), PTC Assist (2023-2024) + PEPR  °°]
NUMPEX (2023-2028) + ANR AIM4EP (2022-2025)

m  EOCoE-Il

m  BPI funding in kink with Startup Renaissance Fusion (2024-2027)
m European projects: EUROfusion TSVV (2022-2026) ‘
» Joint research center (SAFE) Singapore Alliance with France for Fusion Energy R(m |TER schematic view

SOLEDGE-3X

@ P. Donnel - ORAP 14/10/2024 X-point geometry 12




Gysela-X++ towards exascale

- Complete rewriting of the code in modern C++ (1/2)

m Proof of Concept: 2D prototype VOICE++ in modern C++ to address plasma-wall interaction problem

YAML + Paraconf
(developed at MDLS)

C++ template meta-programming
domain decomposition library
(developed at MDLS)

1D solver based on spline finite elements

(1D,1V) Semi-lagrangian scheme
Vlasov : . :
with non-equidistant splines

HDF5 via @

+ GITLAB + google tests + GITLAB-CI + SPACK installation
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[E. Bourne et al., JCP 2023]
[Y. Munschy et al., NF 2024]
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Gysela-X++ towards exascale
- Complete rewriting of the code in modern C++ (2/2)

m YAML + Paraconf
(developed at MDLS)

+
mm e C++ template meta-programming

High level s domain decomposition library

of o (developed at MDLS) Adding of all operators
parallelism 5D semi-lagrangian scheme + (gyroaverage + sources

MPI + with non-equidistant splines + collisions)
KOKKOS
m 3D solver based on 2D spline FEM + 1D - (2D+1D) solver

IMAS via @

+ GITLAB + google tests + GITLAB-CI| + SPACK installation

+ In-Situ diagnostics

m Main idea: Mutualize all modules independent on the 3D space geometry between Fortran code and C++ code
Extract FO0 modules: rewrite them in C++/ GPU then plug them to F90 old code + C++ new code
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Conclusions

The GYSELA code at the era of pre-exascale for ion-scale turbulence simulations for current tokamaks

« Optimized up to more than 500k cores on standard CPU architecture (ex: AMD milan)

« Resource needs: more than 150 millions of CPU hours / year

- Petabytes of data manipulated per simulation with huge reduction to limit the storage to few Terabytes

- Lot of physics still to be explored with this version during the development of Gysela-X++ .

Gysela-X++ : Rewritting in modern C++, more modular and scalable on different accelerated architectures
« More realistic temperature gradients at the edge: Non-equidistant mesh

« More realistic geometry: X-point and stellarators

« More physics: neutrals, fusion reactions...

- Based on DDC library + Kokkos

« In situ diagnostics foreseen
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Backup slides
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Two main magnetic topologies to confine a plasma

Tokamak Stellarator
© Confinement © Stability
@ Plasma current, Disruptions ® oa-confinement, Technology

P. Donnel - ORAP 14/10/2024
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Work in progress : Optimized Data workflow -
progress : Op SE. ..

* Main idea : Decouple 1/0 from computing kernels

* HPC/IA coupling not trivial : CPU or GPU for computing kernels (Fortran or C++) + GPU for
diagnostics +Al (python)

m Development of in-situ diagnostics framework based on PDI + DEISA + DASK
« PDI Data Interface for handling I/O (developed at MDLS) https://pdi.julien-bigot.fr/master/
« DEISA (dask-enabled in situ analytics) library (developed at MDLS+INRIA)  [A. Gueroudji et al., 2023]
« DASK a flexible library for parallel computing in Python  https://docs.dask.org/

Optimized I/0O libraries . .
5D » PDI > >
GYSELA / (parallel HDF5, FTI, SIONLIB...) oD restart file writing
computing kernels

¢3D

¥ DASK f llel Reduction 0to 3D data

or paralle - ucti .
| S » optimized

— DIEN Python diagnostics o Compression psaving
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https://pdi.julien-bigot.fr/master/

~
2028 objective: In-situ Al diagnostics de.cg| 93D w‘ P 3D ‘

« Development of in-situ Al diagnostics to optimize exascale simulations:

o Data compression
o Automatic anomaly detection: Automatic stop of simulation - CPU consumption optimization

o Automatic rare event detection: Optimisation of diagnostic saving - Memory storage reduction

f5D » PD R Optimized 1/0 libraries
GYSELA (parallel HDF5, FTI, SIONLIB...)

A

5D restart file writing

computing kernels
K ¢3D
) 4 . 0 to 3D data
— e DASK for parallel - Reduction | optimized
. : Al Python diagnostics | - Compression .
Stop simulation saving
v A
Deep learning
Anomaly detection < ] » PINN, Event detection, ... —
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