

Exascale challenges for tokamak plasma turbulence simulations

Y. Asahi, R. Bigué, J. Bigot, E. Bourne, N. Bouzat, E. Caschera, Y. Cho, L. De Gianni, G. Dif-Pradalier, <u>P. Donnel</u>, C. Ehrlacher, X. Garbet, P. Ghendrih, C. Gillot, V. Grandgirard, E. Gravier, A. Hoffmann, A. Kara, G. Latu, B. Legouix, M. Lesur, K. Lim, G. Lo-Cascio, E. Malabeouf, Y. Munschy, K. Obrejan, T. Padioleau, C. Passeron, M. Peybernes, Z. Qu, T. Rouyer, Y. Sarazin, E. Sonnendrücker, R. Varennes, P. Vidal

Outline

1. General context

2. The GYSELA code: 10 years of upgrades

3. Roadmap for the future: upgrades to target Exascale simulations

4. Conclusion

Two strategies to obtain controlled fusion reactions in a lab: inertial fusion vs magnetic fusion

To sustain a plasma without external heating ($P_{fus} = P_{loss}$), one needs to fullfil the Lawson criterion

Ignition obtained for the first time! $P_{X-rays} < P_{fus}$ [H. Abu-Shawareb, PRL 2022]

• Historical physics result!

NIF

But still far from Electricity production

 $P_{fus} \sim P_{lasers} << P_{grid}$ + low repetition rate

ITER project

One of the largest scientific project of mankind history

International project: China, India, Japan, Korea, Russia, UE, USA

Under construction at Cadarache

Success of fusion requires understanding and prediction of transport in tokamaks

ITER project

- To optimize performance and minimize risks, each ITER scenario will have to be numerically validated.
- A complete chain of numerical tools will be required, ranging from scale models, which can be used in real time, to first-principles simulations, which are more costly but more reliable.
- Turbulent transport mainly governs confinement in Tokamaks
- Tokamak plasmas weakly collisional \rightarrow Kinetic approach mandatory
 - Fusion plasma turbulence is low frequency → fast gyro-motion is averaged out
 Gyrokinetic approach: phase space reduction from 6D to 5D

Outline

1. General context

2. The GYSELA code: 10 years of upgrades

3. Roadmap for the future: upgrades to target Exascale simulations

4. Conclusion

The GYSELA code

- GYSELA is the unique gyrokinetic code based on a semi-Lagrangian scheme
 - Fortran 90 + few C modules with hybrid MPI/OpenMP parallelisation optimized up for up to 750,000 cores
- Development in strong collaboration between physicists, mathematicians and computer scientists
 - Ex: **SELALIB** software library = **joint effort INRIA** Project Lab FRATRES **CEA**/IRFM MINGUS (INRIA/Rennes) and TONUS (INRIA/Strasbourg) + Max-Planck-Institut für Plasmaphysic (**IPP**/Garching) started in 2011.
 - → SELALIB modules recently successfully coupled to GYSELA [Emily Bourne, PhD 2022]

International collaboration France + Switzerland+ Germany + Singapour

Improvements of the physics model in the last 10 years

- Electrons: from adiabatic response (not simulated) to kinetic [C. Ehrlacher 2018, V. Grandgirard 2019]
- Simulation of impurities (= minority ion species)
 [D. Estève 2018, P. Donnel 2019, K. Lim 2023]
- Geometry: from circular to shaped plasmas + ripple [Bourne 2023, R. Varennes 2023, PhD L. De Gianni 2023-2026]
- Boundary conditions: from simple buffer to more realistic immersed boundaries [E. Caschera 2018, Dif-Pradalier 2022, PhD Y. Munschy 2021-2024]
- From electrostatic (constant magnetic field) to electromagnetic [PhD C. Gillot 2017-2020, PhD R. Bigué 2023-2026]
- More complex operators: collisions, sources... [P. Donnel 2018, G. Lo-Cascio 2022]

Need for constant code optimization to partly compensate for the increased complexity of the physics + adapation to new architectures

- Vectorisation
- Blocking \rightarrow Cache optimisation
- Asynchronous MPI communications

Performance gains in GYSELA (Marconi, 384 MPI x 24 OMP)

Relative efficiency of 85% on more than

500k cores and 63% on 729 088 cores

[V. Grandgirard et al., PASC 2022]

P. Donnel - ORAP 14/10/2024

Outline

1. General context

2. The GYSELA code: 10 years of upgrades

3. Roadmap for the future: upgrades to target Exascale simulations

4. Conclusion

Need for Exascale computing to simulate ITER

- The dominant transport in tokamaks is related to electromagnetic turbulence. A first principle code is intrinsically multi-scale as it needs to solve simultaneously small scale turbulence and large scale evolution of the plasma
- Spatial scale
 - Turbulent structures proportionnal to the ion Larmor radius $\rho_i = \frac{\sqrt{mk_bT}}{e^B}$
 - Size of plasma 'a'
 - The grid resolution scales as ρ_*^{-2} where $\rho_* = \frac{\rho_i}{a}$. WEST: $\rho_*^{-1} = 250$, ITER: $\rho_*^{-1} = 1000$
- > Grid resolution needs to be increase by a factor ~ 16 from WEST ($\sim 10^{11}$ points) to ITER ($\sim 1.6 \times 10^{12}$ points)
- Temporal resolution
 - Correlation time of turbulence proportionnal to $\Omega_{ci} = \frac{eB}{m}$
 - Confinement time of the plasma scales as number of iterations = $\tau_E \Omega_{ci} \propto \rho_*^{-2}$ (pessimistic) or ρ_*^{-3} (optimistic)
- Number of iterations increased by a factor 16 to 64 from WEST to ITER
- Well resolved simulations of WEST ~ 10 millions of CPU hours → impossible to simulate ITER with current code& HPC

Roadmap for Gysela-X++ towards exascale \rightarrow Why do we choose to rewrite GYSELA ?

- Gysela-X++ = GYSELA in modern C++ with X-point for exascale ITER core-edge turbulence simulations (+ 3D via BPI / Renaissance Fusion)
 - Rewritting of the code in modern C++ with MPI + Kokkos
 - Portable code on new exascale architectures
 - Non-uniform meshes
 - relevant density & temperature gradients at edge-SOL
 - Semi-Lagrangian scheme for multi-patches
 - X-point geometry
 - Implementation of a **3D scalable Poisson solver**
 - X-point configuration + stellarator configuration
 - Scalable I/O and in-situ diagnostics
- Development of the new code supported by multiple projects/collab.
 - National projects: Moonshot CExA (2023-2025), PTC Dose (2023-2024), PTC Assist (2023-2024) + PEPR NUMPEX (2023-2028) + ANR AIM4EP (2022-2025)
 - EoCoE-III
 - BPI funding in kink with Startup Renaissance Fusion (2024-2027)
- European projects: EUROfusion TSVV (2022-2026)
- Joint research center (SAFE) Singapore Alliance with France for Fusion Energy

Gysela-X++ towards exascale

 \rightarrow Complete rewriting of the code in modern C++ (1/2)

Proof of Concept: 2D prototype VOICE++ in modern C++ to address plasma-wall interaction problem

Main idea: Mutualize all modules independent on the 3D space geometry between Fortran code and C++ code Extract F90 modules: rewrite them in C++/ GPU then plug them to F90 old code + C++ new code

Conclusions

- The GYSELA code at the era of pre-exascale for ion-scale turbulence simulations for current tokamaks
 - Optimized up to more than 500k cores on standard CPU architecture (ex: AMD milan)
 - Resource needs: more than 150 millions of CPU hours / year
 - Petabytes of data manipulated per simulation with huge reduction to limit the storage to few Terabytes
 - \rightarrow Lot of physics still to be explored with this version during the development of Gysela-X++ .
- Gysela-X++ : Rewritting in modern C++, more modular and scalable on different accelerated architectures
 - More realistic temperature gradients at the edge: Non-equidistant mesh
 - More realistic geometry: X-point and stellarators
 - More physics: neutrals, fusion reactions...
 - Based on DDC library + Kokkos
 - In situ diagnostics foreseen

Backup slides

cea

Two main magnetic topologies to confine a plasma

Tokamak

- ③ Confinement
- ℬ Plasma current, Disruptions

Stellarator

③ Stability

- Main idea : Decouple I/O from computing kernels
 - HPC/IA coupling not trivial : CPU or GPU for computing kernels (Fortran or C++) + GPU for diagnostics +AI (python)
- Development of in-situ diagnostics framework based on PDI + DEISA + DASK
 - PDI Data Interface for handling I/O (developed at MDLS) <u>https://pdi.julien-bigot.fr/master/</u>
 - DEISA (dask-enabled in situ analytics) library (developed at MDLS+INRIA) [A. Gueroudji et al., 2023]
 - DASK a flexible library for parallel computing in Python https://docs.dask.org/

2028 objective: In-situ AI diagnostics

- Development of in-situ AI diagnostics to optimize exascale simulations:
 - Data compression
 - \circ Automatic anomaly detection: Automatic stop of simulation \rightarrow CPU consumption optimization
 - \circ Automatic rare event detection: Optimisation of diagnostic saving \rightarrow Memory storage reduction

