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Motivation

Provide a visualization service to remote users with 
requirements for large data exploration
Integrate the offering with the current computing 
solutions at our Center
Gives users the same resource allocation schemes 
they are used to.
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Outline
Resource allocation
– Graphics server
– Data Access

Remote and parallel visualization
– Remote Access
– Multi-user sessions
– Multi-node sessions
– Data distribution

Distributed Rendering
– VTK Composite Renderer
– Equalizer Graphics
– HP Compositing API

Conclusion
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The HPC systems
 

at CSCS

Cray XT3 1664 dual-core Opterons
Cray XT4 500 dual-core Opterons
Sun (400 Opterons, TIER-2 in the LCG)
IBM 748 Power 5

HP Cluster HORUS (32 Opterons)
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GPFS file system

IB 10 Gb main 
interconnect between IO 
and client nodes
100TB today and up to 
500TB in the next year 

Test performance we 
reached as single jobs 
740MB/s and up to 1.3 
GB/s in parallel jobs

Based on the DDN 9950

Global Parallel File System

Compute
clusters

Scratch

HP Visualization
cluster

ARCHIVE

Global Filesystem

Scratch
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The HP SVA Visualization cluster

1 x LOGIN NODE
HP Proliant DL 385, 

AMD Opteron 2.4 Ghz, 
16 GB Memory 

CSCS HP XC SVA Visualization  
Cluster HORUS 

VOLTAIRE GRID 
SWITCH ISR 9024

24 x 4xIB ports

Infiniband

SWITCHlambda

CSCS HP XC SVA 
Visualization ClusterHorus

Technical & Operational Serives 
Group, Vincenzo Annaloro,
20.08.2007, Revision 1.0

Virtual Display Surface, 
Tile 3x3

10 x HP RGS NODES
HP xw9300 workstation, AMD 

Opteron 2.4 Ghz, 8 GB Memory 

6 x HP DISPLAY, RENDER NODES
HP xw9300 workstation, AMD 

Opteron 2.4 Ghz, 16 GB Memory 

CSCS 
STORAGE 

AREA 
NETWORK 

ISLAND
KVM Admin 

Console

Private 
GBE LAN
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HP Remote Graphics Software (RGS)

An innovative software that enables real-time 
remote access to workstation desktops and share it 
over a standard network. 
Remote visualization enables:

– Remote access/demo
– Remote team review 
– Remote user application support/training
– Centralization and consolidation of desktop workstations
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1 sender + 1 (or more) receivers

RGS transfers only final image data (pixels) over the 
network. No part of original data is sent.
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Technical advantages of HP RGS

Utilizes 3D hardware rendering capability of sender 
system and does not burden CPU

Rendering and image capture are tightly linked and 
optimized while maintaining complete application 
transparency (no modification necessary with 
application to remotely use) 

Image compression technology applies different 
compression algorithm to maintain good balance 
between performance, image quality, and 
compression ratio.
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Multiple scenarios of use

The HP Scalable Visualization Array is managed by SLURM

Interactive single-node remote visualization
Interactive broadcast mode (teacher + students)
………………………………..(shared controls)
Multi-node rendering + remote image display

Multi-node client-server applications with ParaView, with client 
outside of HP cluster
3x3 tiled display at CSCS
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Users come in on a first-come first-serve basis

The X servers are killed and restarted between each use

The X server can be started with 1 or 2 DISPLAYs

Nodes are moved to a compute queue during night-time
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Parallelism in Scientific Visualization

Data parallelism most everywhere
– Data I/O
– Processing
– Rendering

Time-parallelism (new)
– See IEEE Vis’2007 “Time 

dependent processing in a 
parallel pipeline architecture”, 
J. Biddiscombe et al. Rendering

1 2 N… …

Data Filters

Mappers

Data Source



29/11/07 13

Data partitioning & load balancing examples

The mesh is split in multiple pieces 
of size( # of cells / # cpus)

The AMR mesh refinement is 
naturally mapped to different cpus
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Data partitioning & load balancing examples

The mesh partitioning  from the 
solver is re-used (ANSYS CFX)

Cylindrical coordinates will require a 
custom-made mapping
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Default Load Balancing



29/11/07 16

3D tree load balancing
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Swirling Flow Animation

Once the data load balancing is optimised, the user does his 
own movies from his remote desk.
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Practical Examples

Applications
– Bio-medical
– Astro-physics
– Geo-physics
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Finite Element data visualization

Simulation of bone loading involves very large finite 
element meshes obtained from CT-scans of bones.
Trabecular bone is a type of osseous tissue with a low 
density and strength but very high surface area, that fills 
the inner cavity of long bones. 
http://parfe.sourceforge.net/

ParaView support include
– Distributed and Parallel I/O
– Ghost-cells at the interfaces
– Interactive rendering of large 

polygonal meshes

http://parfe.sourceforge.net/
http://en.wikipedia.org/wiki/Image:Illu_compact_spongy_bone.jpg
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The overall Paraview visualization pipeline

Sort-last 
compositing 
to create the 
final image

1 2 N… …

Distributed Data Filters

Surface Extraction & 
Smoothing

Rendering
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Three benchmarks

Adding more processing/rendering power for a 
given dataset

– Surface is 3.8 million pseudo-colored quadrilaterals

Increasing the size of the dataset

The largest dataset available
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Benchmark 1 (execution of the full pipeline)

0

100

200

300

400

500

600

1 serial 1
parallel

2 2 dual 4 4 dual 8 8 dual 16 16 dual

Overall
Execution

•The left-most column (serial) does not include a data repartitioning phase
•All „dual“ columns use dual cpu/dual gpu per node on our HP SVA cluster.
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Parallel Rendering Times

0

1

2

3

4

5

6

1
serial

2 2 dual 4 4 dual 8 8 dual 16 16
dual

Rendering time
(frame/s)

• Immediate mode rendering in 1024x768 pixel buffer
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Benchmark 2
Surface of increasing size:

1.8 M polygons
7.5 M polygons
22.9 M polygons
46 M polygons

1, 2, 4, 8, 16 graphics cards

sort-last rendering, without 
pixel sub-sampling and 
without Squirt compression
Immediate mode rendering
Ghost-cells were not provided
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Rendering times (frames/s)

0
2
4
6
8

10

1 2 4 8 16
# of GPUs

c_s05 (7.56 M polys)

c_s03 (1.8 M polys)
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Rendering times (frame/s)

0

0.5

1

1.5

1 2 4 8 16
# of GPUs

c_s09 (46 M polys)

c_s07 (22.9 M polys)

A fat node (32 GB) 
enabled the single- 
node run
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Benchmark 3

409,387,412 hexahedra 
and 447,294,209 nodes 
with nodal 
displacements distributed 
among 16 CPUs
re-indexing of node 
numbers
on-the-fly 64-bit to 32-bit 
conversion of HDF5 data
interactive visualization
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Artifacts with the simple-minded decomposition
Problem:
Visual artifacts 
are caused by a 
non-physical 
boundary

It can be resolved 
by creating ghost- 
cells overlapping 
the boundaries

ParaView’s 
parallel Kd-Tree 
partitioning will 
accomplish that.
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Offload the pre-processing
Run the distributed data filter 
(D3) on a large cluster without 
graphics.
VTK can write the data with 
ghost-cells in a partitioned 
manner.
Pre-computing the data 
partitioning can be done on N 
processors (generating N 
pieces), and read back on M 
graphics engines.

– N < M (a refined data 
partitioning can be done)

– N > M ( each proc handles 
several pieces)

1 2 N… …

Distributed Data Filters

Surface Extraction & 
Smoothing

I/O to disks
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Ambient Occlusion
Bone surface: ~8M triangles/4M vertices; 256 samples; 512x512 depth maps.
AO pre-computation time: 240s on one node; speed scales linearly with the number 
of nodes.   
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Ambient Occlusion Algorithm

For each vertex in a 3D model compute a visibility value 
in the range [0.0,1.0]:

1. Compute bounding sphere enclosing 3D model
2. Compute a number of random points on the sphere surface
3. Initialize vertex visibility array to zero
4. Move the view point to each point and render the scene 

pointing the camera towards the sphere center; at each 
rendering:

1. retrieve depth map
2. Compare depth component of each transformed vertex 

to value in depth map; if vertex[ z ] < depth_buffer[z] 
increment vertex visibility counter

5. Divide visibility values by maximum visibility value
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Ambient Occlusion

Use the per-vertex visibility value during shading e.g.:
– Vertex color = Material Color * Vertex Visibility

Visibility values can be stored as per-vertex 1D texture 
coordinates associated with a 1D luminance texture.

Texture coordinate = visibility value:

Algorithm can be parallelized:
– Send whole 3D model to different nodes
– Each node performs Num. samples / Num. nodes rendering/ 

depth-comparison/visibility-update loops and updates a 
separate vertex visibility array

– The visibility arrays from each node are summed together and 
divided by maximum visibility value     

0 1
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Ambient Occlusion

V1 V2 … VN

Visibility array 1

V1 V2 … VN

Visibility array n

∑

<

<

Node 1

Node n

Render from Num Samples / n view points 

Compare vertex[z] with depth value  and update
Visibility array 1

Compare vertex[z] with depth value  and update
Visibility array nRender from Num Samples / n view points 

Sum visibility arrays and 
divide by Max visibility value
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Geo-physics data visualization
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Large structured grids (400^3) and (800^3)

The pipeline decides 
by itself how to split the 
volume
Handle any request, 
including ghost-cells
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Astrophysics; 233 AMR grids, 9 levels

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16

single cpu/gpu
double cpu/gpu

All processors 
manage grids 
from all levels
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Summary of requirements

Efficient splitting of cells and nodes, or grid slabs is a must.
The data format should foster efficient data access. (cf. HDF5)
Ghost-cells can be added later
We focus on static data distribution for load balancing to get 
the best overall performance (with focus on time)

Visibility of very large opaque surfaces can be enhanced with 
Ambient Occlusion. But, …

– The simple implementation of the parallel evaluation needs the 
full geometry.

The datasets are courtesy of Prof. Harry van Lenthe, Prof. Peter 
Arbenz, Martha Evonuk and Rolf Walder, ETH Zürich
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Distributed rendering

Many of our applications use opaque geometry 
where sort-last rendering works really well (VTK)

Our parallel volume rendering experience is based 
on the Equalizer Graphics toolkit (eVolve)

HP has opened their Pixel Compositing API recently 
offered to the open-source community
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eVolve benchmarking

Performance tests on 1 to 16 nodes
Only one GPU per node was used
1280x1024 pixels full screen resolution
3D texture based volume rendering algorithm
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Composition Modes

2D Decomposition mode
– Each node renders whole model but only for one region of 

the screen
– One node receives all finished parts and composites them 

into a complete frame
DB Decomposition
– Each node renders part of a model for the whole screen
– Each node receives specific part of a frame and performs 

compositing for that part
– One node gathers all composed parts and composes final 

frame
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Performance 2563

256^3 Cube
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Performance 5123

512^3 cube
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Parallel Volume Rendering summary

Currently, for smaller models, performance is bounded by 
hardware limitation of the compositing stage
– In particular drawPixel performance is poor

For larger models it is possible to achieve even more than linear 
speed up
Equalizer can provide distributed rendering on interactive 
speeds for larger volumes

Thanks to Renato Pajarola, Stefan Eilemann and Maxim 
Makhinya for sharing these results from the CSCS cluster 
benchmark



The 
Parallel Compositing 
Library

Steve Greenwood
HP Scalable Visualization Team

5 slides borrowed without permission 
(available on the Web)

Graphic courtesy of Amira
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HP’s Parallel Compositing Library?

A Code Library
– Greatly simplifies the task of distributing the rendering of 

graphics across a set of graphics cards

– Comes in a few flavors
A sample implementation that runs on many platforms
A tuned implementation released as a part of HP’s SVA 
2.0

– In a phrase: The Library is an MPI for Visualization
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How does it work?

The Library is designed to facilitate sort-last parallel rendering
– Sort-last parallel rendering

Produces an image in parts using multiple graphics cards installed on 1 or 
more nodes
Enables

– Rendering very large datasets with reasonable frame rates
– Creating very large images

– When an image is created in parts, the separate image parts must then be 
combined to produce the final image

the combining of the pixels from multiple images is called compositing
– The Library supports compositing on a network of nodes

The application present image parts to the distributed Library
– The image parts are called framelets

The Library combines the parts using one or more pixel operators
The Library delivers the composited image back to one or more parts of 
the application for display

– The composited image parts are called outputs

framelet #1 framelet #2 output
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What can the Library do?
Process much more graphics than an individual graphics card
– A high-end graphics card: 225 Million Triangles/second
– The library can process many times this number of triangles

It does this by letting you distribute the load over multiple cards 

Create images larger than any individual graphic card 
– A high-end graphics card is still limited to 

2  3840 x 2400 pixels displays
4K x 4K pixels when rendering 3D graphics

– The library can produce images many times this size
It does this by letting you use multiple cards to produce the 
images
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Photo of Sample Program
Each box is 
drawn 
separately and 
presented to 
the library

The final image 
is displayed by 
4 different 
cards

The library 
takes the 
images given 
to it, 
composites 
them, and 
directs the 
resulting image 
to the proper 
card for display 



29/11/07 49

Conclusion

Customized & optimized solutions in visualization
– Data decomposition and partitioning for parallel visualization
– Resource management for multi-user, multi-site, collaborative 

access to graphics hardware
Robust support for Parallel execution & rendering

– HP SVA cluster
– VTK and EqualizerGraphics are our best apps

Resource allocation on a first-come first-serve basis is 
being augmented with a reservation scheme

Request for allocation of computing resources in 2008 now 
include 1000s of hours of parallel visualization
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