
Parallel visualization applications
delivered to remote users

Jean M. Favre
Data Management, Analysis and Visualization Group

29/11/07 2

Motivation

Provide a visualization service to remote users with
requirements for large data exploration
Integrate the offering with the current computing
solutions at our Center
Gives users the same resource allocation schemes
they are used to.

29/11/07 3

Outline
Resource allocation
– Graphics server
– Data Access

Remote and parallel visualization
– Remote Access
– Multi-user sessions
– Multi-node sessions
– Data distribution

Distributed Rendering
– VTK Composite Renderer
– Equalizer Graphics
– HP Compositing API

Conclusion

29/11/07 4

The HPC systems

at CSCS

Cray XT3 1664 dual-core Opterons
Cray XT4 500 dual-core Opterons
Sun (400 Opterons, TIER-2 in the LCG)
IBM 748 Power 5

HP Cluster HORUS (32 Opterons)

29/11/07 5

GPFS file system

IB 10 Gb main
interconnect between IO
and client nodes
100TB today and up to
500TB in the next year

Test performance we
reached as single jobs
740MB/s and up to 1.3
GB/s in parallel jobs

Based on the DDN 9950

Global Parallel File System

Compute
clusters

Scratch

HP Visualization
cluster

ARCHIVE

Global Filesystem

Scratch

29/11/07 6

The HP SVA Visualization cluster

1 x LOGIN NODE
HP Proliant DL 385,

AMD Opteron 2.4 Ghz,
16 GB Memory

CSCS HP XC SVA Visualization
Cluster HORUS

VOLTAIRE GRID
SWITCH ISR 9024

24 x 4xIB ports

Infiniband

SWITCHlambda

CSCS HP XC SVA
Visualization ClusterHorus

Technical & Operational Serives
Group, Vincenzo Annaloro,
20.08.2007, Revision 1.0

Virtual Display Surface,
Tile 3x3

10 x HP RGS NODES
HP xw9300 workstation, AMD

Opteron 2.4 Ghz, 8 GB Memory

6 x HP DISPLAY, RENDER NODES
HP xw9300 workstation, AMD

Opteron 2.4 Ghz, 16 GB Memory

CSCS
STORAGE

AREA
NETWORK

ISLAND
KVM Admin

Console

Private
GBE LAN

29/11/07 7

HP Remote Graphics Software (RGS)

An innovative software that enables real-time
remote access to workstation desktops and share it
over a standard network.
Remote visualization enables:

– Remote access/demo
– Remote team review
– Remote user application support/training
– Centralization and consolidation of desktop workstations

29/11/07 8

1 sender + 1 (or more) receivers

RGS transfers only final image data (pixels) over the
network. No part of original data is sent.

29/11/07 9

Technical advantages of HP RGS

Utilizes 3D hardware rendering capability of sender
system and does not burden CPU

Rendering and image capture are tightly linked and
optimized while maintaining complete application
transparency (no modification necessary with
application to remotely use)

Image compression technology applies different
compression algorithm to maintain good balance
between performance, image quality, and
compression ratio.

29/11/07 10

Multiple scenarios of use

The HP Scalable Visualization Array is managed by SLURM

Interactive single-node remote visualization
Interactive broadcast mode (teacher + students)
………………………………..(shared controls)
Multi-node rendering + remote image display

Multi-node client-server applications with ParaView, with client
outside of HP cluster
3x3 tiled display at CSCS

29/11/07 11

Users come in on a first-come first-serve basis

The X servers are killed and restarted between each use

The X server can be started with 1 or 2 DISPLAYs

Nodes are moved to a compute queue during night-time

29/11/07 12

Parallelism in Scientific Visualization

Data parallelism most everywhere
– Data I/O
– Processing
– Rendering

Time-parallelism (new)
– See IEEE Vis’2007 “Time

dependent processing in a
parallel pipeline architecture”,
J. Biddiscombe et al. Rendering

1 2 N… …

Data Filters

Mappers

Data Source

29/11/07 13

Data partitioning & load balancing examples

The mesh is split in multiple pieces
of size(# of cells / # cpus)

The AMR mesh refinement is
naturally mapped to different cpus

29/11/07 14

Data partitioning & load balancing examples

The mesh partitioning from the
solver is re-used (ANSYS CFX)

Cylindrical coordinates will require a
custom-made mapping

29/11/07 15

Default Load Balancing

29/11/07 16

3D tree load balancing

29/11/07 17

Swirling Flow Animation

Once the data load balancing is optimised, the user does his
own movies from his remote desk.

29/11/07 18

Practical Examples

Applications
– Bio-medical
– Astro-physics
– Geo-physics

29/11/07 19

Finite Element data visualization

Simulation of bone loading involves very large finite
element meshes obtained from CT-scans of bones.
Trabecular bone is a type of osseous tissue with a low
density and strength but very high surface area, that fills
the inner cavity of long bones.
http://parfe.sourceforge.net/

ParaView support include
– Distributed and Parallel I/O
– Ghost-cells at the interfaces
– Interactive rendering of large

polygonal meshes

http://parfe.sourceforge.net/
http://en.wikipedia.org/wiki/Image:Illu_compact_spongy_bone.jpg

29/11/07 20

The overall Paraview visualization pipeline

Sort-last
compositing
to create the
final image

1 2 N… …

Distributed Data Filters

Surface Extraction &
Smoothing

Rendering

29/11/07 21

Three benchmarks

Adding more processing/rendering power for a
given dataset

– Surface is 3.8 million pseudo-colored quadrilaterals

Increasing the size of the dataset

The largest dataset available

29/11/07 22

Benchmark 1 (execution of the full pipeline)

0

100

200

300

400

500

600

1 serial 1
parallel

2 2 dual 4 4 dual 8 8 dual 16 16 dual

Overall
Execution

•The left-most column (serial) does not include a data repartitioning phase
•All „dual“ columns use dual cpu/dual gpu per node on our HP SVA cluster.

29/11/07 23

Parallel Rendering Times

0

1

2

3

4

5

6

1
serial

2 2 dual 4 4 dual 8 8 dual 16 16
dual

Rendering time
(frame/s)

• Immediate mode rendering in 1024x768 pixel buffer

29/11/07 24

Benchmark 2
Surface of increasing size:

1.8 M polygons
7.5 M polygons
22.9 M polygons
46 M polygons

1, 2, 4, 8, 16 graphics cards

sort-last rendering, without
pixel sub-sampling and
without Squirt compression
Immediate mode rendering
Ghost-cells were not provided

29/11/07 25

Rendering times (frames/s)

0
2
4
6
8

10

1 2 4 8 16
of GPUs

c_s05 (7.56 M polys)

c_s03 (1.8 M polys)

29/11/07 26

Rendering times (frame/s)

0

0.5

1

1.5

1 2 4 8 16
of GPUs

c_s09 (46 M polys)

c_s07 (22.9 M polys)

A fat node (32 GB)
enabled the single-
node run

29/11/07 27

Benchmark 3

409,387,412 hexahedra
and 447,294,209 nodes
with nodal
displacements distributed
among 16 CPUs
re-indexing of node
numbers
on-the-fly 64-bit to 32-bit
conversion of HDF5 data
interactive visualization

29/11/07 28

Artifacts with the simple-minded decomposition
Problem:
Visual artifacts
are caused by a
non-physical
boundary

It can be resolved
by creating ghost-
cells overlapping
the boundaries

ParaView’s
parallel Kd-Tree
partitioning will
accomplish that.

29/11/07 29

Offload the pre-processing
Run the distributed data filter
(D3) on a large cluster without
graphics.
VTK can write the data with
ghost-cells in a partitioned
manner.
Pre-computing the data
partitioning can be done on N
processors (generating N
pieces), and read back on M
graphics engines.

– N < M (a refined data
partitioning can be done)

– N > M (each proc handles
several pieces)

1 2 N… …

Distributed Data Filters

Surface Extraction &
Smoothing

I/O to disks

29/11/07 30

Ambient Occlusion
Bone surface: ~8M triangles/4M vertices; 256 samples; 512x512 depth maps.
AO pre-computation time: 240s on one node; speed scales linearly with the number
of nodes.

29/11/07 31

Ambient Occlusion Algorithm

For each vertex in a 3D model compute a visibility value
in the range [0.0,1.0]:

1. Compute bounding sphere enclosing 3D model
2. Compute a number of random points on the sphere surface
3. Initialize vertex visibility array to zero
4. Move the view point to each point and render the scene

pointing the camera towards the sphere center; at each
rendering:

1. retrieve depth map
2. Compare depth component of each transformed vertex

to value in depth map; if vertex[z] < depth_buffer[z]
increment vertex visibility counter

5. Divide visibility values by maximum visibility value

29/11/07 32

Ambient Occlusion

Use the per-vertex visibility value during shading e.g.:
– Vertex color = Material Color * Vertex Visibility

Visibility values can be stored as per-vertex 1D texture
coordinates associated with a 1D luminance texture.

Texture coordinate = visibility value:

Algorithm can be parallelized:
– Send whole 3D model to different nodes
– Each node performs Num. samples / Num. nodes rendering/

depth-comparison/visibility-update loops and updates a
separate vertex visibility array

– The visibility arrays from each node are summed together and
divided by maximum visibility value

0 1

29/11/07 33

Ambient Occlusion

V1 V2 … VN

Visibility array 1

V1 V2 … VN

Visibility array n

∑

<

<

Node 1

Node n

Render from Num Samples / n view points

Compare vertex[z] with depth value and update
Visibility array 1

Compare vertex[z] with depth value and update
Visibility array nRender from Num Samples / n view points

Sum visibility arrays and
divide by Max visibility value

29/11/07 34

Geo-physics data visualization

29/11/07 35

Large structured grids (400^3) and (800^3)

The pipeline decides
by itself how to split the
volume
Handle any request,
including ghost-cells

29/11/07 36

Astrophysics; 233 AMR grids, 9 levels

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16

single cpu/gpu
double cpu/gpu

All processors
manage grids
from all levels

29/11/07 37

Summary of requirements

Efficient splitting of cells and nodes, or grid slabs is a must.
The data format should foster efficient data access. (cf. HDF5)
Ghost-cells can be added later
We focus on static data distribution for load balancing to get
the best overall performance (with focus on time)

Visibility of very large opaque surfaces can be enhanced with
Ambient Occlusion. But, …

– The simple implementation of the parallel evaluation needs the
full geometry.

The datasets are courtesy of Prof. Harry van Lenthe, Prof. Peter
Arbenz, Martha Evonuk and Rolf Walder, ETH Zürich

29/11/07 38

Distributed rendering

Many of our applications use opaque geometry
where sort-last rendering works really well (VTK)

Our parallel volume rendering experience is based
on the Equalizer Graphics toolkit (eVolve)

HP has opened their Pixel Compositing API recently
offered to the open-source community

29/11/07 39

eVolve benchmarking

Performance tests on 1 to 16 nodes
Only one GPU per node was used
1280x1024 pixels full screen resolution
3D texture based volume rendering algorithm

29/11/07 40

Composition Modes

2D Decomposition mode
– Each node renders whole model but only for one region of

the screen
– One node receives all finished parts and composites them

into a complete frame
DB Decomposition
– Each node renders part of a model for the whole screen
– Each node receives specific part of a frame and performs

compositing for that part
– One node gathers all composed parts and composes final

frame

29/11/07 41

Performance 2563

256^3 Cube

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nodes

2D

DB

linear

29/11/07 42

Performance 5123

512^3 cube

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nodes

2D

DB

linear

29/11/07 43

Parallel Volume Rendering summary

Currently, for smaller models, performance is bounded by
hardware limitation of the compositing stage
– In particular drawPixel performance is poor

For larger models it is possible to achieve even more than linear
speed up
Equalizer can provide distributed rendering on interactive
speeds for larger volumes

Thanks to Renato Pajarola, Stefan Eilemann and Maxim
Makhinya for sharing these results from the CSCS cluster
benchmark

The
Parallel Compositing
Library

Steve Greenwood
HP Scalable Visualization Team

5 slides borrowed without permission
(available on the Web)

Graphic courtesy of Amira

29/11/07 45

HP’s Parallel Compositing Library?

A Code Library
– Greatly simplifies the task of distributing the rendering of

graphics across a set of graphics cards

– Comes in a few flavors
A sample implementation that runs on many platforms
A tuned implementation released as a part of HP’s SVA
2.0

– In a phrase: The Library is an MPI for Visualization

29/11/07 46

How does it work?

The Library is designed to facilitate sort-last parallel rendering
– Sort-last parallel rendering

Produces an image in parts using multiple graphics cards installed on 1 or
more nodes
Enables

– Rendering very large datasets with reasonable frame rates
– Creating very large images

– When an image is created in parts, the separate image parts must then be
combined to produce the final image

the combining of the pixels from multiple images is called compositing
– The Library supports compositing on a network of nodes

The application present image parts to the distributed Library
– The image parts are called framelets

The Library combines the parts using one or more pixel operators
The Library delivers the composited image back to one or more parts of
the application for display

– The composited image parts are called outputs

framelet #1 framelet #2 output

29/11/07 47

What can the Library do?
Process much more graphics than an individual graphics card
– A high-end graphics card: 225 Million Triangles/second
– The library can process many times this number of triangles

It does this by letting you distribute the load over multiple cards

Create images larger than any individual graphic card
– A high-end graphics card is still limited to

2 3840 x 2400 pixels displays
4K x 4K pixels when rendering 3D graphics

– The library can produce images many times this size
It does this by letting you use multiple cards to produce the
images

29/11/07 48

Photo of Sample Program
Each box is
drawn
separately and
presented to
the library

The final image
is displayed by
4 different
cards

The library
takes the
images given
to it,
composites
them, and
directs the
resulting image
to the proper
card for display

29/11/07 49

Conclusion

Customized & optimized solutions in visualization
– Data decomposition and partitioning for parallel visualization
– Resource management for multi-user, multi-site, collaborative

access to graphics hardware
Robust support for Parallel execution & rendering

– HP SVA cluster
– VTK and EqualizerGraphics are our best apps

Resource allocation on a first-come first-serve basis is
being augmented with a reservation scheme

Request for allocation of computing resources in 2008 now
include 1000s of hours of parallel visualization

	Parallel visualization applications�delivered to remote users
	Motivation
	Outline
	The HPC systems at CSCS
	Global Parallel File System
	The HP SVA Visualization cluster
	HP Remote Graphics Software (RGS)
	1 sender + 1 (or more) receivers
	Technical advantages of HP RGS
	Multiple scenarios of use
	Users come in on a first-come first-serve basis
	Parallelism in Scientific Visualization
	Data partitioning & load balancing examples
	Data partitioning & load balancing examples
	Default Load Balancing
	3D tree load balancing
	Swirling Flow Animation
	Practical Examples
	Finite Element data visualization
	The overall Paraview visualization pipeline
	Three benchmarks
	Benchmark 1 (execution of the full pipeline)
	Parallel Rendering Times
	Benchmark 2
	Rendering times (frames/s)
	Rendering times (frame/s)
	Benchmark 3
	Artifacts with the simple-minded decomposition
	Offload the pre-processing
	Ambient Occlusion
	Ambient Occlusion Algorithm
	Ambient Occlusion
	Ambient Occlusion
	Geo-physics data visualization
	Slide Number 35
	Astrophysics; 233 AMR grids, 9 levels
	Summary of requirements
	Distributed rendering
	eVolve benchmarking
	Composition Modes
	Performance 2563
	Performance 5123
	Parallel Volume Rendering summary
	The �Parallel Compositing Library
	HP’s Parallel Compositing Library?
	How does it work?
	What can the Library do?
	Photo of Sample Program
	Conclusion

