Workflows, a crucial challenge for the future of HPC

43e Forum Orap
March 19, 2019
F. Bodin
Introduction

- HPC vision as numerical models running on a supercomputer is not representative anymore

- Data deluge / revolution is changing the game*
 - Atmospheric Radiation Measurement
 - Personalized Medicine
 - Seismic imaging of hydrocarbon reservoirs
 - Light Sources
 - Smart Cities
 - Precision agriculture
 - Digital Manufacturing/Industry 4.0
 - ...

- HPC included in a larger ecosystem
 - IoT, Big Data, Cloud technology

*Big Data and Extreme-scale Computing (BDEC) Project
A serie of international workshops to foster community convergence on a next generation cyberinfrastructure for science
Outline of the Presentation

1. Applications

2. Resources

3. Workflow challenges
Applications

• Many new applications crossing the usual HPC frontiers
 – IoT
 – Urgent computing
 – Increasing use of AI techniques
 – Digital Twins
Digital Twins

• Numerical representation of a part of the real world
 – Capture the temporal-spatial relationships
 – Inform & predict

• Virtual testing platform
 – Allow experimentations
 – Combined with data from the IoT, ...

• Numerical and qualitative models
 – CFD, actors models, DL based models, ...
Digital Twins

Src: Jens Krueger ITWM Faunhofer, BDVA/ETP4HPC/EXDCI2
Air Quality & Mobility

Co-financed by the Connecting Europe Facility of the European Union

New users / applications

Communication heterogeneity

Storage heterogeneity

Computation heterogeneity

30000 CPU/hours per simulated day

http://www.aqmo.eu
Sensor Data from Bus

Use of machine learning to get measurement context
AQMO Technical Background

- Massive heterogeneity in compute, network and storage resources
 - At the technical level
 - At the governance level: multi-owners, multi-tenants

- Sensors, weather, topology and simulation data
 - Accumulation over time
 - Edge and HPC computing in the same workflow

- Multiple kinds of networks (LoRa, 4G, WLAN)
 - Some connectivity can be intermittent
Conclusion on Applications

• Different execution profile must be taken into account
 – Long-running jobs based on streaming data

• Involve many research groups that need to share storage and compute resources

 \rightarrow Data logistic can be very complex
Compute and Storage Resources

• Sensors and scientific instruments

• **Edges, Fog, Data Centers, Cloud, HPC centers** *

• New **agile resources** for storage and compute
 – Adapt to the fast changing landscape

*CI2030: Future Advanced Cyberinfrastructure
A report of the NSF Advisory Committee for Cyberinfrastructure*
Edge Computing

• Compute and store close to the sensors
 – To avoid moving data
 – For privacy motives

• Can use HPC technologies
 – e.g. GPU computing

• Need to be integrated in the data logistic and application workflows
FOG Computing-1

• Fog computing is a layered model for enabling ubiquitous access to a shared continuum of scalable computing resources
• Into the network itself decentralized
 – applications,
 – management,
 – data analytics
• Based on a distributed and federated compute model

Src: NIST Special Publication 500-325, Fog Computing Conceptual Model Recommendations of the National Institute of Standards and Technology
FOG Computing-2

Source: NIST Special Publication 500-325, Fog Computing Conceptual Model Recommendations of the National Institute of Standards and Technology
Agile Storage

• Agile access to storage infrastructure resources should be provided
 – Needed in a fast changing science

• Federation of infrastructures
 – Focus on sharing data

• A new initiative led by Alex Szalay
 – Aim at providing a design that is scalable and flexible
 – https://www.openstoragenetwork.org/
Conclusion on Resources-1

• Need to construct a federation of private and public infrastructures
 – Need to increase permeability of supercomputing systems to facilitate data injection

• Need a formulation of a vision for a future service-oriented architecture framework
 – For HPC compute and other compute services as well as storage and other data services/logistic

• Network topology obliviousness is an issue
 – Data logistic depends on network topology, links throughputs, storage placements, etc.
Conclusion on Resources-2

• Heterogeneity of systems/networks components is a great source of complexity
 – but we cannot impose homogenization!

• Multi-tenants, multi-owners adding governance issue

• Agile resources needed as well as larger more permanent infrastructures
 – But need sharing experience, specification, etc.
 – Better if federated

• Archiving data is under-estimated
 – 50K€ / petabytes / year (~AWS)
Workflows Challenges

• Providing tools and governance for deploying large scale, science-driven workflows
 – Orchestrating high-end data analysis, intensive computing stages
 – Increasing use of AI techniques
 – Across a continuum of resources

• Data logistics must be deployed across the continuum of compute and data resources
Conclusion

• **Dropping frontiers** between systems is needed to address current scientific challenges

• Workflows deployment across a continuum of resources is a **technical** and **governance issue**

• **Security/privacy** needs to be addressed in a way that it does not forbid moving forward