Storage-Based Convergence Between HPC and Big Data

Pierre Matri*, Alexandru Costan†, Gabriel Antoniu◇, Jesús Montes*, María S. Pérez*

* Universidad Politécnica de Madrid, Madrid, Spain — † INSA Rennes / IRISA, Rennes, France — ◇ Inria Rennes Bretagne-Atlantique, Rennes, France

ORAP Forum, Paris, March, 2017
Exascale Computing and Big Data

By Daniel A. Reed, Jack Dongarra
Communications of the ACM, Vol. 58 No. 7, Pages 56-68
10.1145/2699414
Big Data and Extreme Computing

High-end data analytics and HPC are both essential elements of an integrated computing research-and-development agenda;

- Big compute generates and is needed to analyze big data
- Networking and memory performance are critical to both

Programming models and tools are perhaps the biggest point of divergence between the scientific-computing and big-data ecosystems.

Credits: Jack Dongarra
1. **Accelerating delivery of a capable exascale computing system** that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.

2. **Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.**

3. Establishing, over the next 15 years, **a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached** (the "post- Moore's Law era").

4. **Increasing the capacity and capability of an enduring national HPC ecosystem** by employing a holistic approach that addresses relevant factors such as networking technology, workflow, downward scaling, foundational algorithms and software, accessibility, and workforce development.

5. **Developing an enduring public-private collaboration** to ensure that the benefits of the research and development advances are, to the greatest extent, shared between the United States Government and industrial and academic sectors.
Big Data and Extreme Computing workshops series (BDEC)

http://www.exascale.org/bdec/

Overarching goal:

1. Create an international collaborative process focused on the co-design of software infrastructure for extreme scale science, addressing the challenges of both extreme scale computing and big data, and supporting a broad spectrum of major research domains,

2. Describe funding structures and strategies of public bodies with Exascale R&D goals worldwide

3. Establishing and maintaining a global network of expertise and funding bodies in the area of Exascale computing

BDEC Workshop, Charleston, SC, USA, April 29-May 1, 2013
BDEC Workshop, Fukuoka, Japan, February 26-28, 2014
BDEC Workshop, Barcelona, Spain, January 28-30, 2015
BDEC Workshop, Frankfurt, June 16-17, 2016

Credits: Jack Dongarra
Divergent ecosystems (Reed/Dongarra, CACM, July 2016)

Application Level:
- Mahout, R and Applications
- Applications and Community Codes
- FORTRAN, C, C++ and IDEs
- Domain-specific Libraries
- Perf & Debug (e.g., PAPI)

Middleware & Management:
- Hive, Pig, Sqoop, Flume, Storm
- HDFS (Hadoop File System)
- MPI-OpenMP, CUDA/OpenCL, NA Libs
- PFS (e.g., Lustre), Batch Scheduler, System Monitoring

System Software:
- VMs, Containers and Cloud Services
- Linux OS variant
- Linux OS variant

Cluster Hardware:
- Ethernet Switches, Local Node Storage, Commodity X86 Racks
- Data Analytics Ecosystem
- Computational Science Ecosystem

Credits: Dan Reed
Stepping Stones: Towards EC/BD Convergence

Sharing the same resources
- Resource management methods need to evolve so that BD and EC can share resources

Convergence towards « stepping stones »
- Challenges and demonstrations
 - Software representing an entire system that can be used for BDEC

- HPC features available in the cloud (HPC)
- Cloud” features available on HPC platforms (availability, predictable response time, etc.)

Credits: Kate Keahey
A Catalyst for Convergence: Data Science
A Catalyst for Convergence: Data Science
An Approach:
The BigStorage H2020 Project

Project overview

Data Science
- Modelling Big Data processing
- Energy-efficient analysis
- Data-driven decision making for Big Data applications

HPC-Cloud Convergence
- Applications
- Middleware, operating in the cloud and HPC environments
- Infrastructure for Storage and Computing

Use Cases

Storage Devices
- Storage acceleration
- Storage convergence
- Storage isolation

Energy
- Compression or de-duplication for storage footprint reduction
- Hints from application to storage system, enabling energy consumption reduction
The BigStorage Consortium
Can we build a converged storage system for HPC and Big Data?

One question
HPC App
HPC App

(POSIX) File System
folder / file hierarchies
permissions

Supports
random reads and writes to files
atomic file renaming
multi-user protection
Supports random reads and writes to files - BLOBs

(Binary Large OBjects)
BLOB Storage System
One use-case
One problem...

A scientific monitoring service, monitoring the **ALICE CERN LHC** experiment:

- Ingests events at a rate of up to 13 GB/s,
- Produces more than 10^9 data files per year

Computes 35.000+ aggregates in real-time

Current lock-based platform does not scale

...**multiple requirements**

- Multi-object write synchronization support
- Atomic, lock-free writes
- High-performance reads
- Horizontal scalability
Why is write synchronization needed?

Aggregate computation is a 2-step operation:

1. Read current value remotely from storage
2. Write the updated value remotely to storage

Aggregate update needs to be atomic.

Also, adding a new data to persistent storage and updating the related aggregates needs to be performed atomically as well.
At which level to handle concurrency management?
At the application level?

Enables fine-grained synchronization (app knowledge) …but significantly complexities application design, and typically only guarantees isolation.

At a middleware level?

Eases application design… …but has a performance cost (zero knowledge), and usually also only guarantees isolation.

At a storage level?

Also eases application design, better performance than middleware (storage knowledge), and may offer additional consistency guarantees.
Aren’t existing transactional object stores enough?
Not quite.

Existing transactional systems typically only ensure consistency of *writes*

In most current systems, *reads are performed atomically* only because objects are small enough to be located on a single server, *i.e.*

- Records for database systems
- Values for Key-Value stores

Yet, for large objects, *reads spanning multiple chunks should always return a consistent view*
Týr transactional design

Týr internally maps all writes to transactions

- Multi-chunk, and even multi-blob operations are processed with a serializable order
- Ensures that all chunk replicas are consistent

Týr uses a high-performance, sequentially-consistent transaction chain algorithm: WARP [1].

Týr is alive!

Fully implemented as a prototype with ~22,000 lines of C

Lock-free, queue-free, asynchronous design.

Leveraging well-known technologies:

- Google LevelDB [1] for node-local persistent storage,
- Google FlatBuffers [2] for message serialization,

Týr evaluation with MonALISA

MonALISA data collection was re-implemented atop Týr, and evaluated using real data

Týr was compared to other state-of-the-art, blob-based storage systems:

- RADOS / librados (Ceph)
- Azure Storage Blobs (Microsoft)
- BlobSeer (Inria)

Experiments run on the Microsoft Azure cloud, up to 256 nodes

3 x replication factor for all systems
Non-synchronized write performance:
Evaluating the cost of the transaction protocol

![Graph showing average throughput (mil. ops/sec) against the number of concurrent writers.](image)

MonALISA write performance, varying the number of concurrent writers

In that experiment, no system other than Týr is synchronized

- 32 nodes,
- Average of 50 x 10-minute runs

Týr shows performance similar to RADOS, despite its significantly stronger consistency guarantees
Synchronized write performance:
Evaluating transactional write performance

We add fine-grained, application-level, lock-based synchronization to Týr competitors.

Performance of Týr competitors decrease due to the synchronization cost.

Clear advantage of Atomic operations over Read-Update-Write aggregate updates.
We simulate MonALISA reads, varying the number of concurrent readers.

Slightly lower performance than RADOS, but offers read consistency guarantees.

Týr lightweight read protocol allows it to outperform BlobSeer and Azure Storage.
We vary the ratio of read to writes, and measure the read throughput.

Týr and BlobSeer show little interference between readers and writers.

RADOS and Azure Storage, in contrast, show degraded read performance as the ratio of writers to readers increase.
We measure the average read / write throughput of Týr under a typical 65% read / 35% write MonALISA workload.

Týr scales almost linearly with the number of nodes in the cluster.
HPC App

Big Data App

K/V Store

RDB

Converged BLOB Storage System

Týr for HPC applications?

And Now?

Týr as a base layer for higher-level storage abstractions?
Thank you!

Týr version management

Node A

Node B

Node C

Chunk 1, V1

Chunk 2, V1

Chunk 3, V1

\[\text{hash}\{\text{blob, chunk}\} \rightarrow \text{node} \]
Týr version management

Node A
- Chunk 1, V1

Node B
- Chunk 2, V1
- Chunk 2, V2

Node C
- Chunk 3, V1
- Chunk 3, V2
Týr version management

Node A
- Chunk 1, V1

Node B
- Chunk 2, V1
- Chunk 2, V2
- Chunk 2, V3

Node C
- Chunk 3, V1
- Chunk 3, V2
Týr version management

Node A
- Chunk 1, V1

Node B
- Chunk 2, V1
- Chunk 2, V2
- Chunk 2, V3

Node C
- Chunk 3, V1
- Chunk 3, V2
Týr version management

Node A
- Chunk 1, V1
- Version Metadata BLOB
 BLOB.V3 = {C1.V1, C2.V3, C3.V2}

Node B
- Chunk 2, V1
- Chunk 2, V2
- Chunk 2, V3

Node C
- Chunk 3, V1
- Chunk 3, V2
Handling single-chunk reads

Node A
- Chunk 1, V1
- Version Metadata BLOB
 BLOB.V3 = {C1.V1, C2.V3, C3.V2}

Node B
- Chunk 2, V3
- C2.V3

Node C
- Chunk 3, V2

Client

read(C2)
Handling multi-chunk reads

read(C3.V2)

Node A
Chunk 1, V1
Version Metadata BLOB
BLOB.V3 = {C1.V1, C2.V3, C3.V2}

Node B
Chunk 2, V3

Node C
Chunk 3, V2

Client
read(C2,C3)

read(C3.V2)

C2.V3

C3.V2
Handling multi-chunk reads

```
read(C2, C3)
```

Client

Storage Cluster

- Chunk 1, V1
- Chunk 2, V3
- Chunk 3, V2

C2, V3

C3, V2
Handling transactional reads

\[
\text{read(C2.V3)} + \text{piggyback}\{\text{C1.V1, C2.V3, C3.V2}\}
\]
From atomic writes to atomic operations

Leveraging serializable writes, Týr generalizes atomic writes to atomic operations

Simple binary operations can be performed with a single round-trip instead of two

With MonALISA, aggregate updates can be performed atomically and efficiently