Dynamique Haute-Fréquence des marchés financiers

Emmanuel Bacry
Directeur de recherche au CNRS
Professeur Associé
Responsable de l’Initiative Data Science
Centre de Mathématiques Appliquées
Ecole Polytechnique

emmanuel.bacry@polytechnique.fr
http://www.cmap.polytechnique.fr/~bacry
Introduction to Hawkes processes

- Point processes introduced by A.G.Hawkes in the 70’s
- Flexible and versatile tool to investigate mutual and/or self interaction of dynamic flows
- Very successful in seismic (> 1980)
- Rising popularity in finance (> 2007)
- Rising popularity in machine learning (network, ...)

E.Bacry, 2016 - Forum ORAP
The 1-Dimensional Poisson process

- N_t: a jump process (jumps are all of size 1)
- λ_t: intensity (\sim density of jumps)

$\lambda_t = \mu$

\implies The inter-arrival times are independent
Introduction to Hawkes processes

The Poisson process

- N_t: jump process (jumps are all of size 1)
- λ_t: the intensity
- μ: 1-dimensional exogenous intensity

\[\lambda_t = \mu \]

A Hawkes process

⇒ Introducing (positive) correlation in the arrival flow
⇒ "Auto-regressive" relation

\[\lambda_t = \mu + \phi \star dN_t, \]

where by definition

\[\phi \star dN_t = \int_{-\infty}^{+\infty} \phi_i(t-s) dN(s) \]

and $\phi(t)$: kernel function which is positive and causal (i.e., supported by R^+).
Introduction to Hawkes processes

The Poisson process

- N_t: jump process (jumps are all of size 1)
- λ_t: the intensity
- μ: 1-dimensional exogenous intensity

\[\lambda_t = \mu \]

A Hawkes process

\Rightarrow Introducing (positive) correlation in the arrival flow
\Rightarrow ”Auto-regressive” relation

\[\lambda_t = \mu + \phi \ast dN_t, \]

where by definition

\[\phi \ast dN_t = \int_{-\infty}^{+\infty} \phi^{ik}(t - s)dN(s) \]

and $\phi(t)$: kernel function which is positive and causal (i.e., supported by R^+).
Hawkes processes - general definition in dimension D

- N_t: a D-dimensional jump process (jumps are all of size 1)
- λ_t: D-dimensional stochastic intensity
- μ: D-dimensional exogenous intensity
- $\Phi(t)$: $D \times D$ square matrix of kernel functions $\Phi^{ij}(t)$ which are positive and causal (i.e., supported by R^+).
- Moreover $\|\Phi^{ij}\|_{L^1} < +\infty$, $1 \leq i, j \leq D$

"Auto-regressive" relation

$$\lambda_t = \mu + \Phi \ast dN_t,$$

where by definition

$$(\Phi \ast dN_t)^{ij} = \sum_{k=1}^{D} \int_{-\infty}^{+\infty} \Phi^{ik}(t - s)dN^k(s)$$
Hawkes processes: Challenges

- Flexible and versatile tool to investigate mutual and/or self interaction of dynamic flows
- Very successful in seismic (> 1980)
- Rising popularity in finance (> 2007)
- Rising popularity in machine learning (network, ...)
- Many challenges:
 - (non) parametric estimation,
 - high dimension,
 - Big data (scalability),
 - ...
Emergence of electronic markets \Rightarrow Growing activity

Limit Order Books (LOB) are at the heart of the price formation process

Understanding LOB high frequency dynamics has become fundamental
- For policy makers (regulations)
- Market makers (liquidity)
- Investors (reducing transaction cost, impact)
- ...
Price formation process: the Limit Order Book (LOB)

- **Limit order**: offer to buy (sell) a specific quantity at a certain price
- **Cancellation**: withdrawal of a limit order
- **Market order**: order to buy (sell) at best available price

![Diagram showing the Limit Order Book with bids, offers, mid-price, new limit order, sell market order, and cancellation/expiration of a limit order.](image-url)
An 8-dimensionnal model for best bid/ask events

- **Database**:
 - Dax Futures (small tick size), Bund Futures (large tick size)
 - 1 year data: 06/2013-06/2014
 - **timestamp precision** = 1 µs (actual precision ≃ 10 µs)

- **8-dimensional flow**:
 - PA (resp. PB): upward (resp. downward) mid-price jumps
 - TA (resp. TB): market orders at the best ask (resp. bid)
 - LA (resp. LB): limit orders at the best ask (resp. bid)
 - CA (resp. CB): cancel orders at the best ask (resp. bid)

- **More than 100 million events for one asset**
 - Multithreaded cluster (for one asset)
 - HDFS cluster (for many assets)
 - FPGA?
Mutual/Self excitations of flows

Revealing High-frequency dynamics

Color coding of the self/mutual excitations/inhibitions
Mutual/Self excitations of flows

⇒ Symmetry upward/downward and ask/bid
Mutual/Self excitations of Downward/Upward Price flows

⇒ mean reversion of the price
Mutual/Self excitations of Order flow

"Anti-diagonal" shape in the price kernels
⇒ mean reversion of the price

"Diagonal" shape in the limit/cancel/trade kernels
⇒ splitting/herding
Impact of the Order flows on the Price

- Trades: main source of impact (diagonal)
- Limits: contrariant
- Cancels: diagonal
Impact of the Market Order flows on the Price

Cumulative kernels $\int_0^t \Phi^{T? \rightarrow P?}(s)\,ds$ as a function of $\log(t)$

- **Impact kernels** $\Phi^{TA \rightarrow PA}$ and $\Phi^{TB \rightarrow PB}$ are very localized
- Localization around “latency value” $\approx 0.25\,ms$
Going to higher dimensions ...

Account for the volume in dimension 24!
M. Rambaldi, E.B., F. Lillo (2016)

Ask → Ask interaction (left) and Bid → Ask interaction (left)
(Only two quadrants shown)

Current work: ”Labelled” EuroNext database, >1000 agents
→ Herding? Instability tracking? Information flow tracking?
Replay of 2 hours of Eurostoxx mid-price from real trades

\[T_{A_t} - T_{B_t} : \text{True cum. Trades on 3/08/2008 - [10am-12am]} \]

\[PA_t - PB_t : \text{True mid-price on 3/08/2008 between 10am and 12am} \]

Simulation of the mid-price process \(X = PA - PB \) given the real trades