HPC for AI at Facebook
Antoine Bordes – FAIR

Key Figures

Every day on Facebook/WhatsApp:
• 60 billion text messages are sent
• 2 billion pictures are uploaded
• Several millions new videos are published
• 1.5 billion searches are conducted
Facebook AI Research
History

- Established in Dec 2013
- Initiative of CEO and CTOL
- Led by Yann Lecun

- Toward Artificial Intelligence (AI) with Machine Learning
Mission

Advance the state-of-the-art of AI

• Produce **software tools** for AI research and applications
• Help FB products to leverage advances in AI
 • Software prototyping, architecting, interaction with product teams…
• Contribute to Facebook IP portfolio
• Publish research in best conferences and journals
Today

~45 researcher scientists
Machine Learning, Natural Language Processing, Computer Vision, ...

~25 research engineers
Software support, prototyping, in

3 locations: NYC, MPK, Paris
AI Research
Artificial Intelligence?

Design systems that **perceive** and **reason** about the environment to perform “human tasks”

Language: speech recognition, language translation, question answering, dialog system, etc.

Vision: face detection/recognition, object/text recognition, action classification, natural language description, etc.

Planning: given starting point and end goal, plan strategy
FAIR Vision

AI will mediate communication:
- **between people**, e.g.:
 - feed ranking
 - friends / groups suggestions
 - real-time translation
FAIR Vision

AI will mediate communication:

- **between people, e.g.**:
 - feed ranking
 - friends / groups suggestions
 - real-time translation
- **between people and the digital world, e.g.**:
 - content search
 - question answering
 - real-time dialog
Machine Learning?

Learn complex functions from data to make future predictions

• we do not teach computers how to solve a problem
• we teach computers how to learn to solve a problem from data

→ Teaching done via optimizing parameters (millions/billions of them).
Deep Learning?

⇒ learn hierarchical representations of data

Why is Facebook ideally positioned?

• Data collection at scale in online services
• Faster learning algorithms on new hardware, e.g. GPUs
HPC & Deep Learning
WHAT MAKES DEEP LEARNING DEEP?

Today’s Largest Networks

- 10 layers
- 1B parameters
- 10M images
- ~30 Exaflops
- ~30 GPU days

Human brain has trillions of parameters - only 1,000 more.
HPC Implications of Deep Learning

Incredible pure acceleration in the past 5 years
- Almost every entry in ILSVRC Imagenet uses GPUs
- HW performance gains:
 - 2012: 2-GTX 580 (Alexnet), 2 x 1.6 = 3.2 Tflops/s single precision
 - 2014: 4-Tesla K40, 4 x 4.3 = 17.2 Tflops/s single precision
 - 2015: 8-Maxwell (Bigsur) 8 x 5.6 = 44.8 TFlops/s single precision
 - 2016: NVIDIA’s Pascal, DGX-1 = 170 TF/s half precision in a box
 - 2017(?): Volta …
- Algorithmic and Implementation gains
 - 2012: unfolded matrix multiplication (torch im2col)
 - 2014: cuDNN direct convolutions [Chetlur2014], fbfft convolutions [Vasilache2014]
 - 2015: tiled FFT implementations, Winograd convolutions [Lavin2015]
 - 2016: low precision Winograd convolutions running close to peak (cuDNN, Nervana)
HPC Implications of Deep Learning

Faster Pace of Innovation in DNN Techniques and HW

- **Algorithmic innovations**
 - Deep compression, trained networks fit in cache [Han2015]
 - Distributed Deep Learning [Zhang2014]

- **Tooling innovations**
 - Nervana’s MaxAS assembler allows writing at the SASS level directly (register banks, operand reuse in ALU)

- **Hardware innovations**
 - DaDianNao: A Machine-Learning Supercomputer [Temam2014]
 - Nervana ISA [Nervana2015], acquired by Intel
 - Sparse, pruned connections and compression in HW [Han2016]
HPC Implications of Deep Learning

Pushing GPU hardware to the limit

- RNN example:
 - Sequence of small, dependent, matrix-matrix operations
 - Ideally sequence of small, dependent, matrix-vector operations (when batch size $N=1$), latency-bound regime
 - Implementations pushed to persistent kernels on the GPU, very impressive implementation feat.
Distributed Deep Learning
Distributed Deep Learning at FB

Disto

- Scala-like environment for Lua
 - Implemented on top of folly::Future (https://github.com/facebook/folly)
 - Multiple Lua threads per process, each with its own stack
 - Communication, serialization services via apache::Thrift (https://thrift.apache.org/)
 - Based on FAIR fblualib (https://github.com/facebook/fblualib)
 - Torch tensors are first class citizens and communicated specially (cuda IPC, etc) (http://torch.ch)

- Brings future/promise-style programming to Lua
 - Eventing mechanism depends on libevent (http://libevent.org)

- Also tied to FB internal RPC framework for Thrift
 - and other FB internal tools and infrastructure
 - likely won’t be open-sourced
Distributed Deep Learning at FB

Elastic Averaging SGD

- New algorithm [Zhang2014]
 - Communication and coordination of work based on elastic force
 - Distributed parameters linked to center parameters and oscillate in its neighborhood
 - Locally synchronous SGD with periodic, asynchronous, updates Node parameters <-> Central parameters
Distributed Deep Learning at FB

EA-SGD

• Empirical speedup
 - Roughly follows \sqrt{N}, where N is the number of nodes up, measured up to 32 nodes

• Setup comprises:
 - 32 nodes, 4 Tesla K40 GPU per node
 - Data-parallel within node, EA-SGD across nodes
 - Sharded parameters distributed across 64 CPU-only servers

• No noticeable communication cost with published settings

[Zhang2014]
 - Thanks to asynchronous prefetching and delayed updates (tau = 10 iterations, prefetch = 5 iterations)
 - AlexNet trained with 5 full "distributed" epochs (i.e. each nodes sees 5 full epochs in randomized order)

Bonus: Same code implements ASGD with different settings.
Very Large-scale Similarity Search
FB data and embeddings

- Post embedding
- Video embedding
- Text embedding (word2vec)
- User embedding
- Image Embedding (CNN layer)
- Face embedding

$x \in \mathbb{R}^d$
Compressed domain Similarity Search

Billions of vectors per query

Three (contradictory) performance criteria
 - search quality
 - speed
 - memory usage

Bottlenecks

k for

Result:

\[
\arg\min_{i=1..n} \|x - y_i\|^2
\]
Compressed domain Similarity Search

Our research outperforms all published results on billion-sized academics benchmarks (SIFT1B and Deep1B)

<table>
<thead>
<tr>
<th>Method</th>
<th>Hardware</th>
<th>1-R@1 time (μs/query)</th>
<th>1-R@10 time (μs/query)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babenko @CVPR’16</td>
<td>1 thread</td>
<td>0.450</td>
<td>20000</td>
</tr>
<tr>
<td>Facebook @ECCV’16</td>
<td>1 thread</td>
<td>0.456</td>
<td>3660</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Hardware</th>
<th>1-R@10 time (μs/query)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wieschollek @CVPR’16</td>
<td>Titan X</td>
<td>0.350</td>
</tr>
<tr>
<td>Facebook @ECCV’16</td>
<td>1 thread</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>20 threads</td>
<td>0.349</td>
</tr>
</tbody>
</table>
Open Research
How FAIR works

We do research in the open:

- Publish research in best conferences and journals and make them available to the whole research community
- Contribute to open source initiatives such as Torch

- makes our research better and faster
- creates community around tools
- See https://research.facebook.com/ai