Algorithm and software design for conservation
laws

Philippe HELLUY 12
LIRMA, Université de Strasbourg, 2Inria Tonus, France

Forum ORAP, November 2015, Paris

Outlines

Conservation laws

Implicit kinetic schemes

StarPU parallelization

Conservation laws

1) Conservation laws

Don't repeat yourself. Use the same framework for several
applications.

Conservation laws

Many equations in physics are systems of conservation laws:

d
LW+ 1iF(W) = 0.
i=1

W = W(x,t) ! R™: vector of conserved quantities;

1 x = (x!...x9): space variable, d: space dimension, t: time;

- ! = .
! !t—ﬁ,h—m,

I F'(W): flux vector (contains the physics). Hyperbolicity
condition.

I Applications: Maxwell, compressible fluids, MHD, plasma
physics, etc.

SCHNAPS: http://schnaps.gforge.inria.fr

Factorize software developments: design of a generic,
non-linear conservation laws solver.

Optimizations for addressing hybrid CPU/GPU clusters.

Fundamental and industrial applications.

SCHNAPS: “Solveur Conservatif Hyperbolique Non-linéaire
Appliqué aux PlaSmas".

C99, git, cmake, ctest, doxygen, GPL license.

MPI for dealing with MIMD coarse grain parallelism.

OpenCL: SIMD fine grain parallelism (multicore CPU or GPU).
Task graph programming model.

“Extreme programing” philosophy [Beck, 2000]: test driven
development; short development cycles; pair programing; be
prepared for changes; light documentation.

http://schnaps.gforge.inria.fr

OpenCL specificities

! Similar to CUDA: handmade cache management (but more
user-friendly cache systems are coming...); branching may be
costly (SIMD parallelism).

' Industry standard: the very same program can really run on
different accelerators. Drivers exist for: NVIDIA GPUs, AMD
CPUs and GPUs, Intel CPUs and GPUs, MIC, ARM
(CPU4GPU), IBM, etc.

I Kernel compilation at runtime: very interesting for
metaprogramming and performance portability.

I Efficient OpenCL kernels are complex to design...

Unstructured grids

(Project with Thales, AxesSim,
Body Cap, Citizens Sciences)

Unstructured hexahedra
mesh for representing
complex geometries.

Subdomain decomposition.
1 domain = 1 MPI node =
OpenCL devices + CPU.

Non-conformity is
necessary.

Macromesh approach

! Geometry described by a o
coarse mesh made of X
hexahedral curved
macrocells.

! The macromesh is known N
by all MPI nodes. —

! Each macrocell is itself split into smaller subcells of size h.
The subcell connectivity is not stored.

! In each subcell L we consider polynomial basis functions " - of
degree p.
CWLeGD ()").

! Possible non-conformity in “h" and “p".

Discontinuous Galerkin (DG) formulation

The numerical solution satisfies the DG approximation scheme

#L, #i / (WL S F(WL,WL,%" ,L)+/ F(WL, WRr,nR)" | =
L 'L
' R denotes the nelghbor IL&!'R
cells along ! L.
' nyR is the unit normal
vector on ! L oriented from
L to R.
' F(W_, Wg,n): numerical
flux.
L E(W,W,n) =
W)y

Explicit time integration of a system of ordinary differential
equations.

Tasks

! Elementary tasks attached to macrocells or interfaces.

! A task is associated to a computational OpenCL kernel or to
memory operations (GPU' CPU and MPI transfers).

' A task graph for describing dependencies.

! The task graph is deduced only from the macromesh
connectivity.

' Hand made task graph + OpenCL: complicated
programming...

Task graph

Subdomain 2
Interface zone 1'

Extraction from volume 2 Extraction from volume 2

Subdomain 2
Interface zone 1'
Exchange interface 1

Subdomain 2

Subdomain 2
Interface zone 3

Subdomain 2
Volume zone 2

Internal Computations

Subdomain 2
Interface zone 3
Fluxes computation

Subdomain 2
Interface zone 1'
Flux computation

Subdomain 1
Interface zone 1'

n to volume 2 Contribution to volume 2

Subdomain 2
Interface zone 3

Subdomain 2
Volume zone 2
Time Progression

Subdomain 2

Subdomain 2
Interface zone 2'

Extraction from volume 3

Subdomain 2
Interface zone 2'
Exchange Interface 2

Subdomain 2
Volume zone 3

Internal computations

Subdomain 2

Interface zone 3
Contribution to volume 3

Sub domain 2
Surfacic zone 2
Flux computation

Subdomain 2
Interface zone 2
Contribution to volume 3

Subdomain 2
Volume zone 3
Time Progression

Subdomain 2
End

Sync./Async. comparison

Big mesh, polynomial order D = 3, NVIDIA K20 GPUs, infiniband
network, single-precision floats.

| \ | 1GPU | 2 GPUs | 4 GPUs | 8 GPUs |

Sync. | TFLOPS/s | 1.01 1.84 3.53 5.07
ASync. | TFLOPS/s | 1.01 1.94 3.74 7.26

Electromagnetic compatibility application
[Cabel et al., 2011]

! Electromagnetic wave interaction with an aircraft.

! Aircraft geometry described with up to 3.5M hexaedrons (" 1
billion unknowns per time step): mesh of the interior and
exterior of the aircraft. PML transparent boundary conditions.

' We use 8 GPUs to perform the computation. The biggest
simulation does not fit into a single GPU memory.

FDTD 20cm FDTD 5cm FDTD 3cm GD 20cm

Kinetic schemes

1) Kinetic Schemes

Why is it important to solve transport equations ?

Vlasov-BGK framework

| Distribution function: f(x,v,t), x! RY v1 RY t1 [0,T].
' Microscopic “collision vector” K(v) ! R™. Macroscopic
conserved data

W(x,t) = /f(x,v,t)K(v)dv.
\%
! Entropy S(f) and associated Maxwellian myy (v):

#
/mWK =W, /s(mw)z max /s(f)
\ \ fva=W \

! Vlasov-BGK equation (a= a(x,t) is the acceleration):

$

ef + VAR + ad%f = #(myw $).

Kinetic schemes

When the relaxation parameter # is big, the Vlasov equation
provides an approximation of the hyperbolic conservation laws

LW + % aF(W)+ S(W) = 0,

with
Fl(w) = /v‘mW (V)K (v)dv.

S(W) = aé/%\,mW(V)K(v): $aé/ mw (V)% K (V).

\ \

Main idea: numerical solvers for the linear scalar transport equation
lead to natural solvers for the non-linear hyberbolic system
[Deshpande, 1986].

Many applications: fluid mechanics, sprays, plasmas, MHD and
even Maxwell !

Example I: compressible fluids

The Maxwellian my, has not necessarily a physical meaning.
Famous example [Perthame, 1990]

% ' % '
$ $u
W= & $u (, F(W)=&) $u2+p (, p=2¢%
$e+ $u?/2 $e+ $u’/2+ p u

It is possible to find a convex entropy and a kinetic interpretation
with

% +
) e (_ 8 vé u’
a=0, K(v)= v Uomw(v)= =%1y — .
v2/2 2 te oe

where %_1 1y is the indicator function of [$ 1, 1].

Example Il: Lattice Boltzmann

We would like to solve a transport equation for each v. How to
reduce as much as possible the velocity space ?

Answer: lattice Boltzmann. Example for a barotropic low-Mach
inviscid fluid.

I Density $
1 velocity u = (ul, u?)
| pressure p = ¢$ (C is the sound speed)

1 $+ %é($U): 0,
Fe(Bu)+ % a&(pl + $u) u) = 0.

Lattice kinetic interpretation [Qian et al., 1992]

Lattice kinetic interpretation under a low Mach hypothesis: |u| * ¢

' In2D, N = 9,
vI{&...&_1}. In 3D,
N = 27.

: fvz i=_01

PW=(8$,%)K(&=(18,
a= 0,

sau, (§au? u?
(C T

(=13, 'o9=4/9, '14=19, 's5_g=1/36.

+
my(&) =% 1+

Implicit DG solver for transport

Explicit Discontinuous Galerkin (DG) solvers are constrained by an
annoying CFL condition. Empirical stability condition

I X

It + -
2d(2p + 1)Vmax

with:
ol x: cell size.
! d: space dimension
' p: polynomial degree
' Vmax: maximal speed
' Can be worse...

Implicit solvers have no time-step restriction.

Implicit DG for transport equation

Implicit DG approximation scheme: #L, #i

*

an$an_1llL zom Len) z~t £N 4~—fN uwl
—0"7% [va% f+ van'f+vanTfg " =0.
L Mt L '
' R denotes the neighbor IL&!'R
cells along ! L.
max(Vv éan, 0),
min(v an, 0).

I vant
v an~

' n.R is the unit normal
vector on ! L oriented from
L to R.

Second order: Crank-Nicolson, improved Euler, etc.

Upwind numbering

'L is upwind with respect to Rif vang > Oon!L&!R.

' In a macrocell L, the solution depends only on the values of f
in the upwind macrocells.

' No assembly and factorization of the global system.

Dependency graph

For a given velocity v we can build a dependency graph. Vertices
are associated to macrocells and edges to macrocells interfaces or
boundaries. We consider two fictitious additional vertices: the
“upwind” vertex and the "downwind” vertex.

10

Upwind implicit algorithm

[Duff and Reid, 1978, Johnson et al., 1984, Wang and Xu, 1999,
Natvig and Lie, 2008]

! Topological ordering of the dependency graph (supposed to be
a Direct Acyclic Graph).

' First time step: Assembly and LU decomposition of the local
macrocell matrices.

! For each macrocell (in topological order):

't Compute volume terms.

't Compute upwind Buxes.

' Solve the local linear system.

' Extract the results to the downwind cells.

Parallelization 7

StarPU parallelization

3) StarPU parallelization

How to handle in practice a non-uniform parallelism 7

StarPU

StarPU is a library developed at Inria Bordeaux
[Augonnet et al., 2012]: http://starpu.gforge.inria.fr

Data-based task parallelism.

Task description: codelets, input data (R), output data (W or
RW).

The task graph is automatically inferred from data dependency.
The user submits tasks in a correct sequential order.

StarPU schedules the tasks in parallel if possible.

http://starpu.gforge.inria.fr

StarPU implementation

' We start from a working sequential code.

StarPU implementation was smooth: incremental migrations
task by task.

! Several implementations of the same task are possible (CPU,
optimized CPU, GPU OpenCL, GPU CUDA, MIC, etc.)

Preliminary results

We compare a global direct solver to the upwind StarPU solver
with several meshes.

Weak scaling. “dmda” scheduler. AMD Opteron 16 cores, 2.8 Ghz.
Timing in seconds for 200 iterations.

’ nb cores ‘ 0 ‘ 1 ‘ 2 ‘ 4 ‘ 8 \ 16 ‘
10, 10, 8, 8direct |30 | 144 | - | - | -
10, 10, 8, 8upwind | - | 32 |19 |12| 7 | 6
20, 20, 4, 4 upwind | - 41 | 26 | 17 | 12 | 17
20, 20, 8, 8upwind | - | 120 | 72 | 40 | 28 | 20

Task graph

Zoom of the task graph generated by StarPU

29/34

Gantt diagram

Gantt diagram generated by StarPU: sync point at the end of each
time step

Gantt diagram

Gantt diagram generated by StarPU: without sync point at the end
of each time step

Conclusion

My (current) philosophy of software design:
! Mathematics: use the same framework for several applications.
I Extreme programing: avoid software with a rigid universe.

! data-based task parallelism: move gently to hybrid parallelism.

Bibliography |

[Augonnet et al., 2012] Augonnet, C., Aumage, O., Furmento, N., Namyst, R., and Thibault, S.
(2012).
StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators.
In Jesper Larsson Triff, S. B. and Dongarra, J., editors, EuroMPI 2012 , volume 7490 of LNCS.
Springer.
Poster Session.

[Beck, 2000] Beck, K. (2000).
Extreme programming explained: embrace change
Addison-Wesley Professional.

[Cabel et al., 2011] Cabel, T., Charles, J., and Lanteri, S. (2011).
Multi-GPU acceleration of a DGTD method for modeling human exposure to electromagnetic waves.

[Deshpande, 1986] Deshpande, S. (1986).
Kinetic theory based new upwind methods for inviscid compressible flows.
In 24th AIAA Aerospace Sciences Meeting , volume 1.

[Duff and Reid, 1978] Duff, I. S. and Reid, J. K. (1978).
An implementation of tarjan’s algorithm for the block triangularization of a matrix.
ACM Transactions on Mathematical Software (TOMS) , 4(2):137-147.

[Johnson et al., 1984] Johnson, C., Navert, U., and Pitkdranta, J. (1984).
Finite element methods for linear hyperbolic problems.
Computer methods in applied mechanics and engineering , 45(1):285-312.

[Natvig and Lie, 2008] Natvig, J. R. and Lie, K.-A. (2008).
Fast computation of multiphase flow in porous media by implicit discontinuous galerkin schemes with
optimal ordering of elements.
Journal of Computational Physics , 227(24):10108-10124.

Bibliography Il

[Perthame, 1990] Perthame, B. (1990).
Boltzmann type schemes for gas dynamics and the entropy property.
SIAM Journal on Numerical Analysis , 27(6):1405-1421.

[Qian et al., 1992] Qian, Y., d'Humiéres, D., and Lallemand, P. (1992).
Lattice bgk models for navier-stokes equation.
EPL (Europhysics Letters) , 17(6):479.

[Wang and Xu, 1999] Wang, F. and Xu, J. (1999).
A crosswind block iterative method for convection-dominated problems.
SIAM Journal on Scientibc Computing , 21(2):620—645.

	Conservation laws
	Implicit kinetic schemes
	StarPU parallelization

