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Conservation laws

1) Conservation laws

Don't repeat yourself. Use the same framework for several
applications.



Conservation laws

Many equations in physics are systems of conservation laws:

d
LW+ 1iF(W) = 0.
i=1

W = W(x,t) ! R™: vector of conserved quantities;

1 x = (x!...x9): space variable, d: space dimension, t: time;

- ! = .
! !t—ﬁ,h—m,

I F'(W): flux vector (contains the physics). Hyperbolicity
condition.

I Applications: Maxwell, compressible fluids, MHD, plasma
physics, etc.



SCHNAPS: http://schnaps.gforge.inria.fr

Factorize software developments: design of a generic,
non-linear conservation laws solver.

Optimizations for addressing hybrid CPU/GPU clusters.

Fundamental and industrial applications.

SCHNAPS: “Solveur Conservatif Hyperbolique Non-linéaire
Appliqué aux PlaSmas".

C99, git, cmake, ctest, doxygen, GPL license.

MPI for dealing with MIMD coarse grain parallelism.

OpenCL: SIMD fine grain parallelism (multicore CPU or GPU).
Task graph programming model.

“Extreme programing” philosophy [Beck, 2000]: test driven
development; short development cycles; pair programing; be
prepared for changes; light documentation.


http://schnaps.gforge.inria.fr

OpenCL specificities

! Similar to CUDA: handmade cache management (but more
user-friendly cache systems are coming...); branching may be
costly (SIMD parallelism).

' Industry standard: the very same program can really run on
different accelerators. Drivers exist for: NVIDIA GPUs, AMD
CPUs and GPUs, Intel CPUs and GPUs, MIC, ARM
(CPU4GPU), IBM, etc.

I Kernel compilation at runtime: very interesting for
metaprogramming and performance portability.

I Efficient OpenCL kernels are complex to design...



Unstructured grids

(Project with Thales, AxesSim,
Body Cap, Citizens Sciences)

Unstructured hexahedra
mesh for representing
complex geometries.

Subdomain decomposition.
1 domain = 1 MPI node =
OpenCL devices + CPU.

Non-conformity is
necessary.



Macromesh approach

! Geometry described by a o
coarse mesh made of X
hexahedral curved
macrocells.

! The macromesh is known N
by all MPI nodes. —

! Each macrocell is itself split into smaller subcells of size h.
The subcell connectivity is not stored.

! In each subcell L we consider polynomial basis functions " - of
degree p.
CWLeGD ()" ).

! Possible non-conformity in “h" and “p".



Discontinuous Galerkin (DG) formulation

The numerical solution satisfies the DG approximation scheme

#L, #i / (WL S F(WL,WL,%" ,L)+/ F(WL, WRr,nR)" | =
L 'L
' R denotes the nelghbor IL&!'R
cells along ! L.
' nyR is the unit normal
vector on ! L oriented from
L to R.
' F(W_, Wg,n): numerical
flux.
L E(W,W,n) =
W)y

Explicit time integration of a system of ordinary differential
equations.



Tasks

! Elementary tasks attached to macrocells or interfaces.

! A task is associated to a computational OpenCL kernel or to
memory operations (GPU' CPU and MPI transfers).

' A task graph for describing dependencies.

! The task graph is deduced only from the macromesh
connectivity.

' Hand made task graph + OpenCL: complicated
programming...



Task graph
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Sync./Async. comparison

Big mesh, polynomial order D = 3, NVIDIA K20 GPUs, infiniband
network, single-precision floats.

| \ | 1GPU | 2 GPUs | 4 GPUs | 8 GPUs |

Sync. | TFLOPS/s | 1.01 1.84 3.53 5.07
ASync. | TFLOPS/s | 1.01 1.94 3.74 7.26




Electromagnetic compatibility application
[Cabel et al., 2011]

! Electromagnetic wave interaction with an aircraft.

! Aircraft geometry described with up to 3.5M hexaedrons (" 1
billion unknowns per time step): mesh of the interior and
exterior of the aircraft. PML transparent boundary conditions.

' We use 8 GPUs to perform the computation. The biggest
simulation does not fit into a single GPU memory.

FDTD 20cm FDTD 5cm FDTD 3cm GD 20cm




Kinetic schemes

1) Kinetic Schemes

Why is it important to solve transport equations ?



Vlasov-BGK framework

| Distribution function: f(x,v,t), x! RY v1 RY t1 [0,T].
' Microscopic “collision vector” K(v) ! R™. Macroscopic
conserved data

W(x,t) = /f(x,v,t)K(v)dv.
\%
! Entropy S(f) and associated Maxwellian myy (v):

#
/mWK =W, /s(mw)z max /s(f)
\ \ fva=W \

! Vlasov-BGK equation (a= a(x,t) is the acceleration):

$

ef + VAR + ad%f = #(myw $ ).



Kinetic schemes

When the relaxation parameter # is big, the Vlasov equation
provides an approximation of the hyperbolic conservation laws

LW + % aF(W)+ S(W) = 0,

with
Fl(w) = /v‘mW (V)K (v)dv.

S(W) = aé/%\,mW(V)K(v): $aé/ mw (V)% K (V).

\ \

Main idea: numerical solvers for the linear scalar transport equation
lead to natural solvers for the non-linear hyberbolic system
[Deshpande, 1986].

Many applications: fluid mechanics, sprays, plasmas, MHD and
even Maxwell !



Example I: compressible fluids

The Maxwellian my, has not necessarily a physical meaning.
Famous example [Perthame, 1990]

% ' % '
$ $u
W= & $u (, F(W)=&) $u2+p  (, p=2¢%
$e+ $u?/2 $e+ $u’/2+ p u

It is possible to find a convex entropy and a kinetic interpretation
with

% +
) e ( _ 8 vé u’
a=0, K(v)= v Uomw(v)= =%1y — .
v2/2 2 te oe

where %_1 1y is the indicator function of [$ 1, 1].



Example Il: Lattice Boltzmann

We would like to solve a transport equation for each v. How to
reduce as much as possible the velocity space ?

Answer: lattice Boltzmann. Example for a barotropic low-Mach
inviscid fluid.

I Density $
1 velocity u = (ul, u?)
| pressure p = ¢$ (C is the sound speed)

1 $+ %é($U): 0,
Fe(Bu)+ % a&(pl + $u) u) = 0.



Lattice kinetic interpretation [Qian et al., 1992]

Lattice kinetic interpretation under a low Mach hypothesis: |u| * ¢

' In2D, N = 9,
vI{&...&_1}. In 3D,
N = 27.

: fvz i=_01

PW=(8$,%)K(&=(18,
a= 0,

sau, (§au?  u?
( C T

(=13, 'o9=4/9, '14=19, 's5_g=1/36.

+
my(&) =% 1+



Implicit DG solver for transport

Explicit Discontinuous Galerkin (DG) solvers are constrained by an
annoying CFL condition. Empirical stability condition

I X

It + -
2d(2p + 1)Vmax

with:
ol x: cell size.
! d: space dimension
' p: polynomial degree
' Vmax: maximal speed
' Can be worse...

Implicit solvers have no time-step restriction.



Implicit DG for transport equation

Implicit DG approximation scheme: #L, #i

*

an$an_1llL zom Len ) z~t £N 4~—fN uwl
—0"7% [ va% f+ van'f+vanTfg " =0.
L Mt L '
' R denotes the neighbor IL&!'R
cells along ! L.
max(Vv éan, 0),
min(v an, 0).

I vant
v an~

' n.R is the unit normal
vector on ! L oriented from
L to R.

Second order: Crank-Nicolson, improved Euler, etc.



Upwind numbering

'L is upwind with respect to Rif vang > Oon!L&!R.

' In a macrocell L, the solution depends only on the values of f
in the upwind macrocells.

' No assembly and factorization of the global system.




Dependency graph

For a given velocity v we can build a dependency graph. Vertices
are associated to macrocells and edges to macrocells interfaces or
boundaries. We consider two fictitious additional vertices: the
“upwind” vertex and the "downwind” vertex.

10




Upwind implicit algorithm

[Duff and Reid, 1978, Johnson et al., 1984, Wang and Xu, 1999,
Natvig and Lie, 2008]

! Topological ordering of the dependency graph (supposed to be
a Direct Acyclic Graph).

' First time step: Assembly and LU decomposition of the local
macrocell matrices.

! For each macrocell (in topological order):

't Compute volume terms.

't Compute upwind Buxes.

' Solve the local linear system.

' Extract the results to the downwind cells.

Parallelization 7



StarPU parallelization

3) StarPU parallelization

How to handle in practice a non-uniform parallelism 7



StarPU

StarPU is a library developed at Inria Bordeaux
[Augonnet et al., 2012]: http://starpu.gforge.inria.fr

Data-based task parallelism.

Task description: codelets, input data (R), output data (W or
RW).

The task graph is automatically inferred from data dependency.
The user submits tasks in a correct sequential order.

StarPU schedules the tasks in parallel if possible.


http://starpu.gforge.inria.fr

StarPU implementation

' We start from a working sequential code.

StarPU implementation was smooth: incremental migrations
task by task.

! Several implementations of the same task are possible (CPU,
optimized CPU, GPU OpenCL, GPU CUDA, MIC, etc.)



Preliminary results

We compare a global direct solver to the upwind StarPU solver
with several meshes.

Weak scaling. “dmda” scheduler. AMD Opteron 16 cores, 2.8 Ghz.
Timing in seconds for 200 iterations.

’ nb cores ‘ 0 ‘ 1 ‘ 2 ‘ 4 ‘ 8 \ 16 ‘
10, 10, 8, 8direct |30 | 144 | - | - | -
10, 10, 8, 8upwind | - | 32 |19 |12| 7 | 6
20, 20, 4, 4 upwind | - 41 | 26 | 17 | 12 | 17
20, 20, 8, 8upwind | - | 120 | 72 | 40 | 28 | 20




Task graph

Zoom of the task graph generated by StarPU

29/34



Gantt diagram

Gantt diagram generated by StarPU: sync point at the end of each
time step




Gantt diagram

Gantt diagram generated by StarPU: without sync point at the end
of each time step




Conclusion

My (current) philosophy of software design:
! Mathematics: use the same framework for several applications.
I Extreme programing: avoid software with a rigid universe.

! data-based task parallelism: move gently to hybrid parallelism.
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