
1/34

Algorithm and software design for conservation
laws

Philippe HELLUY 1,2

1
IRMA, Université de Strasbourg,

2
Inria Tonus, France

Forum ORAP, November 2015, Paris

2/34

Outlines

Conservation laws

Implicit kinetic schemes

StarPU parallelization

3/34

Conservation laws

1) Conservation laws

Don’t repeat yourself. Use the same framework for several
applications.

4/34

Conservation laws

Many equations in physics are systems of conservation laws:

! t W +
d!

i= 1

! i F i (W) = 0.

! W = W (x, t) ! Rm: vector of conserved quantities;
! x = (x1 . . . xd): space variable, d: space dimension, t : time;
! ! t = !

! t , ! i = !
! xi

;
! F i (W): flux vector (contains the physics). Hyperbolicity

condition.
! Applications: Maxwell, compressible fluids, MHD, plasma

physics, etc.

5/34

SCHNAPS: http://schnaps.gforge.inria.fr

! Factorize software developments: design of a generic,
non-linear conservation laws solver.

! Optimizations for addressing hybrid CPU/GPU clusters.
! Fundamental and industrial applications.

SCHNAPS: “Solveur Conservatif Hyperbolique Non-linéaire
Appliqué aux PlaSmas”.

! C99, git, cmake, ctest, doxygen, GPL license.
! MPI for dealing with MIMD coarse grain parallelism.
! OpenCL: SIMD fine grain parallelism (multicore CPU or GPU).
! Task graph programming model.
! “Extreme programing” philosophy [Beck, 2000]: test driven

development; short development cycles; pair programing; be
prepared for changes; light documentation.

http://schnaps.gforge.inria.fr

6/34

OpenCL specificities

! Similar to CUDA: handmade cache management (but more
user-friendly cache systems are coming...); branching may be
costly (SIMD parallelism).

! Industry standard: the very same program can really run on
different accelerators. Drivers exist for: NVIDIA GPUs, AMD
CPUs and GPUs, Intel CPUs and GPUs, MIC, ARM
(CPU+GPU), IBM, etc.

! Kernel compilation at runtime: very interesting for
metaprogramming and performance portability.

! Efficient OpenCL kernels are complex to design...

7/34

Unstructured grids

(Project with Thales, AxesSim,
Body Cap, Citizens Sciences)

! Unstructured hexahedra
mesh for representing
complex geometries.

! Subdomain decomposition.
1 domain = 1 MPI node =
OpenCL devices + CPU.

! Non-conformity is
necessary.

8/34

Macromesh approach

! Geometry described by a
coarse mesh made of
hexahedral curved
macrocells.

! The macromesh is known
by all MPI nodes.

! Each macrocell is itself split into smaller subcells of size h.
The subcell connectivity is not stored.

! In each subcell L we consider polynomial basis functions " L
i of

degree p.
! WL(x, t) "

"
i wi

L(t)" L
i (x).

! Possible non-conformity in “h” and “p”.

9/34

Discontinuous Galerkin (DG) formulation

The numerical solution satisfies the DG approximation scheme

#L, #i
ˆ

L
! t WL" L

i $
ˆ

L
F(WL, WL, %" L

i)+
ˆ

! L
F(WL, WR, nLR)" L

i = 0.

! R denotes the neighbor
cells along ! L.

! nLR is the unit normal
vector on ! L oriented from
L to R.

! F(WL, WR,n): numerical
flux.

! F(W,W,n) ="
kFk (W)nk .

nLR

! L & ! R

L

R

Explicit time integration of a system of ordinary differential
equations.

10/34

Tasks

! Elementary tasks attached to macrocells or interfaces.
! A task is associated to a computational OpenCL kernel or to

memory operations (GPU' CPU and MPI transfers).
! A task graph for describing dependencies.
! The task graph is deduced only from the macromesh

connectivity.
! Hand made task graph + OpenCL: complicated

programming...

11/34

Task graph

12/34

Sync./Async. comparison

Big mesh, polynomial order D = 3, NVIDIA K20 GPUs, infiniband
network, single-precision floats.

1 GPU 2 GPUs 4 GPUs 8 GPUs
Sync. TFLOPS/s 1.01 1.84 3.53 5.07
ASync. TFLOPS/s 1.01 1.94 3.74 7.26

13/34

Electromagnetic compatibility application
[Cabel et al., 2011]

! Electromagnetic wave interaction with an aircraft.
! Aircraft geometry described with up to 3.5M hexaedrons (" 1

billion unknowns per time step): mesh of the interior and
exterior of the aircraft. PML transparent boundary conditions.

! We use 8 GPUs to perform the computation. The biggest
simulation does not fit into a single GPU memory.

14/34

Kinetic schemes

1) Kinetic Schemes

Why is it important to solve transport equations ?

15/34

Vlasov-BGK framework

! Distribution function: f (x, v, t), x ! Rd , v ! Rd , t ! [0, T].
! Microscopic “collision vector” K (v) ! Rm. Macroscopic

conserved data

W (x, t) =
ˆ

v
f (x, v, t)K (v)dv.

! Entropy s(f) and associated Maxwellian mW (v):
ˆ

v
mW K = W ,

ˆ
v

s(mW) = max´
v fK = W

ˆ
v

s(f)
$

.

! Vlasov-BGK equation (a = a(x, t) is the acceleration):

! t f + v á %xf + a á %vf = # (mW $ f) .

16/34

Kinetic schemes

When the relaxation parameter # is big, the Vlasov equation
provides an approximation of the hyperbolic conservation laws

! t W + % áF(W) + S(W) = 0,

with
Fi (W) =

ˆ
v

vi mW (v)K (v)dv.

S(W) = a á
ˆ

v
%vmW (v)K (v) = $ a á

ˆ
v

mW (v)%vK (v).

Main idea: numerical solvers for the linear scalar transport equation
lead to natural solvers for the non-linear hyberbolic system
[Deshpande, 1986].
Many applications: fluid mechanics, sprays, plasmas, MHD and
even Maxwell !

17/34

Example I: compressible fluids

The Maxwellian mW has not necessarily a physical meaning.
Famous example [Perthame, 1990]

W =

%

&
$

$u
$e + $u2/ 2

'

(, F(W) =

%

&
$u

$u2 + p)
$e + $u2/ 2 + p

*
u

'

(, p = 2$e.

It is possible to find a convex entropy and a kinetic interpretation
with

a = 0, K (v) =

%

&
1
v

v2/ 2

'

(, mW (v) =
$

2
(

6e
%[�1,1]

+
v $ u
(

6e

,
,

where %[�1,1] is the indicator function of [$ 1, 1].

18/34

Example II: Lattice Boltzmann

We would like to solve a transport equation for each v. How to
reduce as much as possible the velocity space ?
Answer: lattice Boltzmann. Example for a barotropic low-Mach
inviscid fluid.

! Density $
! velocity u = (u1, u2)
! pressure p = c2$ (c is the sound speed)

! t $ + % á($u) = 0,

! t ($u) + % á(pI + $u) u) = 0.

19/34

Lattice kinetic interpretation [Qian et al., 1992]

Lattice kinetic interpretation under a low Mach hypothesis: |u| * c

! In 2D, N = 9,
v ! { &

0

. . . &N�1

} . In 3D,
N = 27.

!
´

v =
" N�1

i = 0

! W = ($, $u),K (&) = (1, &),
a = 0,

mW (&i) = $' i

+
1 +

&i áu
(

+
(&i áu)2

(
$

u2

2(

,
,

(= 1/ 3, '
0

= 4/ 9, '
1�4

= 1/ 9, '
5�8

= 1/ 36.

20/34

Implicit DG solver for transport

Explicit Discontinuous Galerkin (DG) solvers are constrained by an
annoying CFL condition. Empirical stability condition

! t +
! x

2d(2p + 1)V
max

with:
! ! x: cell size.
! d: space dimension
! p : polynomial degree
! V

max

: maximal speed
! Can be worse...

Implicit solvers have no time-step restriction.

21/34

Implicit DG for transport equation

Implicit DG approximation scheme: #L, #i

ˆ
L

f n
L $ f n�1

L

! t
" L

i $
ˆ

L
v á%" L

i f n
L +
ˆ

! L

)
v án+ f n

L + v án�f n
R

*
" L

i = 0.

! R denotes the neighbor
cells along ! L.

! v án+ = max(v án, 0),
v án� = min(v án, 0).

! nLR is the unit normal
vector on ! L oriented from
L to R.

nLR

! L & ! R

L

R

Second order: Crank-Nicolson, improved Euler, etc.

22/34

Upwind numbering

! L is upwind with respect to R if v ánLR > 0 on ! L & ! R.
! In a macrocell L, the solution depends only on the values of f

in the upwind macrocells.
! No assembly and factorization of the global system.

23/34

Dependency graph

For a given velocity v we can build a dependency graph. Vertices
are associated to macrocells and edges to macrocells interfaces or
boundaries. We consider two fictitious additional vertices: the
“upwind” vertex and the “downwind” vertex.

24/34

Upwind implicit algorithm

[Duff and Reid, 1978, Johnson et al., 1984, Wang and Xu, 1999,
Natvig and Lie, 2008]

! Topological ordering of the dependency graph (supposed to be
a Direct Acyclic Graph).

! First time step: Assembly and LU decomposition of the local
macrocell matrices.

! For each macrocell (in topological order):
! Compute volume terms.
! Compute upwind ßuxes.
! Solve the local linear system.
! Extract the results to the downwind cells.

Parallelization ?

25/34

StarPU parallelization

3) StarPU parallelization

How to handle in practice a non-uniform parallelism ?

26/34

StarPU

! StarPU is a library developed at Inria Bordeaux
[Augonnet et al., 2012]: http://starpu.gforge.inria.fr

! Data-based task parallelism.
! Task description: codelets, input data (R), output data (W or

RW).
! The task graph is automatically inferred from data dependency.
! The user submits tasks in a correct sequential order.
! StarPU schedules the tasks in parallel if possible.

http://starpu.gforge.inria.fr

27/34

StarPU implementation

! We start from a working sequential code.
! StarPU implementation was smooth: incremental migrations

task by task.
! Several implementations of the same task are possible (CPU,

optimized CPU, GPU OpenCL, GPU CUDA, MIC, etc.)

28/34

Preliminary results

We compare a global direct solver to the upwind StarPU solver
with several meshes.
Weak scaling. “dmda” scheduler. AMD Opteron 16 cores, 2.8 Ghz.
Timing in seconds for 200 iterations.

nb cores 0 1 2 4 8 16
10 , 10 , 8 , 8 direct 30 144 - - - -
10 , 10 , 8 , 8 upwind - 32 19 12 7 6
20 , 20 , 4 , 4 upwind - 41 26 17 12 17
20 , 20 , 8 , 8 upwind - 120 72 40 28 20

29/34

Task graph

Zoom of the task graph generated by StarPU

30/34

Gantt diagram

Gantt diagram generated by StarPU: sync point at the end of each
time step

31/34

Gantt diagram

Gantt diagram generated by StarPU: without sync point at the end
of each time step

32/34

Conclusion

My (current) philosophy of software design:
! Mathematics: use the same framework for several applications.
! Extreme programing: avoid software with a rigid universe.
! data-based task parallelism: move gently to hybrid parallelism.

33/34

Bibliography I

[Augonnet et al., 2012] Augonnet, C., Aumage, O., Furmento, N., Namyst, R., and Thibault, S.
(2012).
StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators.
In Jesper Larsson Träff, S. B. and Dongarra, J., editors, EuroMPI 2012 , volume 7490 of LNCS .
Springer.
Poster Session.

[Beck, 2000] Beck, K. (2000).
Extreme programming explained: embrace change .
Addison-Wesley Professional.

[Cabel et al., 2011] Cabel, T., Charles, J., and Lanteri, S. (2011).
Multi-GPU acceleration of a DGTD method for modeling human exposure to electromagnetic waves.

[Deshpande, 1986] Deshpande, S. (1986).
Kinetic theory based new upwind methods for inviscid compressible flows.
In 24th AIAA Aerospace Sciences Meeting , volume 1.

[Duff and Reid, 1978] Duff, I. S. and Reid, J. K. (1978).
An implementation of tarjan’s algorithm for the block triangularization of a matrix.
ACM Transactions on Mathematical Software (TOMS) , 4(2):137–147.

[Johnson et al., 1984] Johnson, C., Nävert, U., and Pitkäranta, J. (1984).
Finite element methods for linear hyperbolic problems.
Computer methods in applied mechanics and engineering , 45(1):285–312.

[Natvig and Lie, 2008] Natvig, J. R. and Lie, K.-A. (2008).
Fast computation of multiphase flow in porous media by implicit discontinuous galerkin schemes with
optimal ordering of elements.
Journal of Computational Physics , 227(24):10108–10124.

34/34

Bibliography II

[Perthame, 1990] Perthame, B. (1990).
Boltzmann type schemes for gas dynamics and the entropy property.
SIAM Journal on Numerical Analysis , 27(6):1405–1421.

[Qian et al., 1992] Qian, Y., d’Humières, D., and Lallemand, P. (1992).
Lattice bgk models for navier-stokes equation.
EPL (Europhysics Letters) , 17(6):479.

[Wang and Xu, 1999] Wang, F. and Xu, J. (1999).
A crosswind block iterative method for convection-dominated problems.
SIAM Journal on ScientiÞc Computing , 21(2):620–645.

	Conservation laws
	Implicit kinetic schemes
	StarPU parallelization

