


# ETP4HPC HPC technology European HPC ecosystem ORAP forum, March 2016





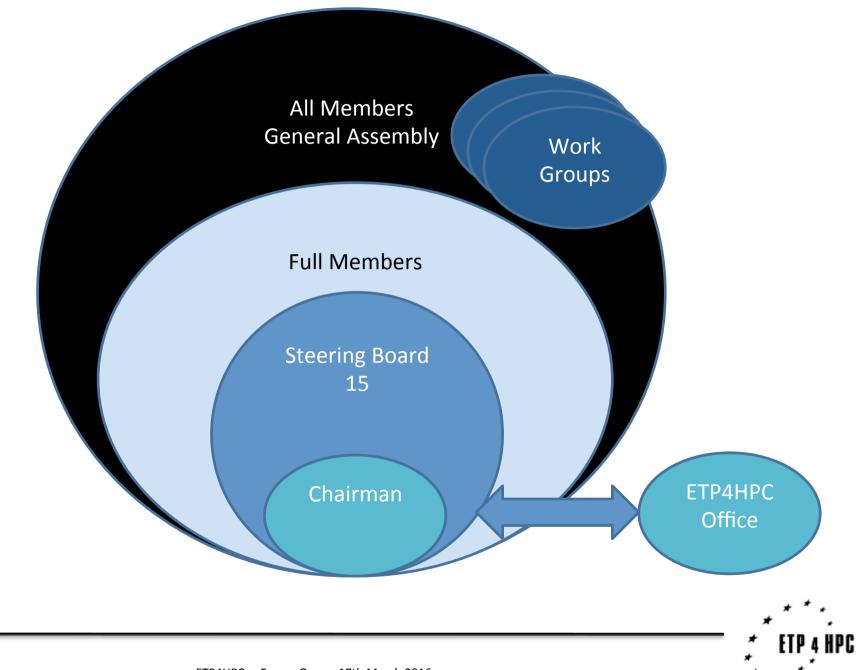
# ETP4HPC and HPC EC plan



## **ETP4HPC**

- Association gathering the HPC technology R&D players of Europe
- Dutch association
- Objective

# "To build a globally competitive European world-class HPC technology value chain"




## **ETP4HPC** members

- 72 organizations involved in HPC technology research based in Europe:
  - 24 Associated / 48 Full members
  - 24 SMEs (Full+Associated)
  - 26 RTO/Full+ 4 Associated
- Full members : 48

| allinea                 | ARM                                               | BSC                      | Bull<br>atos technologies                                                | Cea                                       |                                                     | EUROTECH                                   |
|-------------------------|---------------------------------------------------|--------------------------|--------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| Fraunhofer              | IBM                                               | (intel)                  |                                                                          | Irz                                       | PARTEC CONSTR                                       | Seagate                                    |
| MAXEUER<br>Technologies | LINFN<br>bibliota Razionale<br>di Frieza Nacharet | lebccl                   | numascale                                                                | Incla-                                    | Ter@tec=                                            | ROGUE WAVE                                 |
|                         | H L R IS 🕷                                        |                          | T                                                                        | <b>clustervision</b>                      | 資 produban                                          | Science & Technology<br>Facilities Council |
| MEGWARE                 |                                                   | 🗯 transtec               | Scilab<br>enterprises                                                    | DISTENE                                   | UNIVERSITÉ<br>DE REIMS<br>CHAMPMONE-ARDENNE         |                                            |
| Aricron                 | solutions for your productivity                   | SICOS                    | (KTH)                                                                    | UNIVERSITAT<br>POLITECNICA<br>DE VALENCIA | 🔆 Bright Computing                                  | AR©TUR<br>universe                         |
|                         | DataDirect                                        |                          | E4<br>COMPUTER<br>ENGINEERING                                            | ENGIN<br>SOFT                             | csc                                                 |                                            |
| FUĴĨTSU                 | Queens University<br>Bellast                      | CECMWF                   | Biocomputación y Fisica<br>de Sistemas Complejos<br>Universidad Zaragoza | SURF SARA                                 | Noriseand General<br>See Nuclear Research<br>Select | wisner                                     |
| HUAWEI                  | (FORTH                                            |                          | Appentra                                                                 | Lenovo.                                   | grnet                                               | (hp)                                       |
|                         | AND TECHNER                                       | UNIVERSITÉ DE VERSAILLES | ) (scapos                                                                | CASETEK                                   | <b>Synel</b> <sup>‡</sup> xis                       | <b>T</b> UDelft                            |
| CybeleTech              |                                                   |                          |                                                                          |                                           |                                                     |                                            |

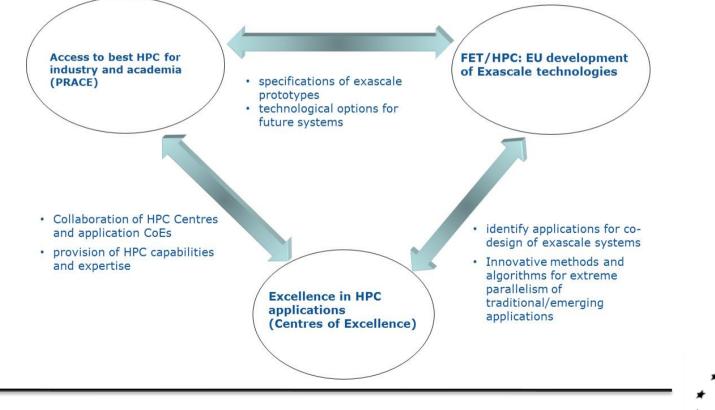




# A bit of history

- 2004: first attempts at designing and building a European HPC Research Infrastructure (HPCEUR, HET), which resulted in the creation of PRACE in 2010
- 2010: meetings of experts representing EC and European stakeholders to define **a global policy**
- 2011: the creation of ETP4HPC
- Actions in FP7
  - PRACE Preparatory Phase and first Integrated Projects
  - Supports action : EESI and EESI2
  - Calls for Exascale computing in WP2011 and WP2013








## The EC Communication

- High-Performance Computing: Europe's place in a Global Race issued in Feb 2012
- Policy based on 3 pillars





### The HPC Public Private Partnership

- Mutual commitment
  - European Commission
    - HPC as a priority in Horizon2020
    - Funding of 700 M€
  - ETP4HPC
    - Investment to match EC funding in R&D
    - Effort to maximise impact on European industry
- Partnership board
  - strategy setting
  - impact monitoring





## The Horizon 2020 HPC projects

- First call of Horizon2020
  - 19 research projects and 2 support actions
  - Most projects started in Sept-Oct 2015 for 3 years
  - Total effort : 94 M€ for R&D projects
- Summary:
  - 170 organisations involved in this effort
  - Project distribution
    - 9 HPC core technologies and architectures
    - 5 Programming methodologies, environments, languages and tools
    - 0 APIs and system software
    - 5 New mathematical and algorithmic approaches

15,7% industry 0,2% non EU 68,9% research 15,3% SME



### FETHPC1 call in WP2014-2015 of H2020

| Acronyme     | Titre                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ExaNoDe      | European Exascale Processor Memory Node Design                                                                                    |
| ExaNeSt      | European Exascale System Interconnect and Storage                                                                                 |
| NEXTGenIO    | Next Generation I/O for Exascale                                                                                                  |
| Mont-Blanc 3 | Mont-Blanc 3, European scalable and power efficient HPC platformbased on low-power embedded technology                            |
| SAGE         | SAGE                                                                                                                              |
| MANGO        | MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems                                                           |
| ECOSCALE     | Energy-efficient Heterogeneous COmputing at exaSCALE                                                                              |
| EXTRA        | Exploiting eXascale Technology with Reconfigurable Architectures                                                                  |
| ESCAPE       | Energy-efficient SCalable Algorithms for weather Prediction at Exascale                                                           |
| ComPat       | Computing Patterns for High Performance Multiscale Computing                                                                      |
| ExCAPE       | Exascale Compound Activity Prediction Engine                                                                                      |
| NLAFET       | Parallel Numerical Linear Algebra for Future Extreme-Scale Systems                                                                |
| INTERTWINE   | Programming Model INTERoperability ToWards Exascale (INTERTWinE)                                                                  |
| greenFLASH   | Green Flash, energy efficient high performance computing for real-time science                                                    |
| READEX       | Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing                                              |
| ALLScale     | An Exascale Programming, Multi-objective Optimisation and Resilience Management Environment Based on Nested Recursive Parallelism |
| ExaFLOW      | Enabling Exascale Fluid Dynamics Simulations                                                                                      |
| ANTAREX      | AutoTuning and Adaptivity appRoach for Energy efficient eXascale HPC systems                                                      |
| ExaHyPE      | An Exascale Hyperbolic PDE Engine                                                                                                 |



## Architecture and Compute Topics

Architecture of future HPC platforms will deal with:

- Energy efficiency
  - 1 ExaFLOP in 20 MW
- Heterogeneity
  - Name your device, please.
- Reconfigurability
  - If you have named FPGA in the previous point...
    You most probably want to reconfigure it, right?
- Resource balance
  - Mostly balance compute throughput, memory and network bandwidth
- Co-design driven
  - And now you want to balance also for CFD, QCD, MD, ...
- Integration and reliability
  - 50K+ compute nodes... Heterogeneous...
  - How to detect failures? How to survive with them?



## Interconnect, Memory, Storage, Data-Intensive Real Time topics

- System architecture for Exascale and data-centric HPC
  - Very Tightly Coupled Data & Computation
  - Codesign using accelerators and FPGAs
- Develop a new server architecture using next generation processors and memory advances
  - Integration of NVRAM technologies in the I/O stack
  - Extreme compute power density
  - Develop the systemware to support their use at the Exascale
- New applications and use cases emerging for HPC
  - Real-time, data-intensive, and energy efficiency



### Programming Models, Algorithms and Mathematics topics

- Programming models
  - Innovative Programming Models for Exascale
  - Enhanced MPI and PGAS: the incremental approach
- Interoperability and autotunining
  - Interoperability of programming models: the "+" issue
  - Autotuning for energy efficiency and green HPC
- Algorithms and Maths
  - Computational Fluid Dynamics for Exascale
  - Multiscale Applications
  - Macine learning
  - Solvers



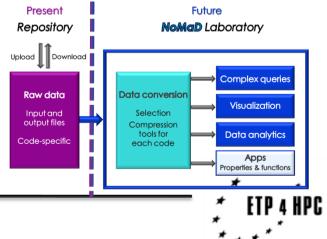
### CoEs – Centres of Excellence in Computing Applications



| Acronym  | Title                                                                                  |  |  |
|----------|----------------------------------------------------------------------------------------|--|--|
| EoCoE    | Energy oriented Centre of Excellence for computer applications                         |  |  |
| BioExcel | Centre of Excellence for Biomolecular Research                                         |  |  |
| NoMaD    | The Novel Materials Discovery Laboratory                                               |  |  |
| MaX      | Materials design at the eXascale                                                       |  |  |
| ESiWACE  | Excellence in SImulation of Weather and Climate in Europe                              |  |  |
| E-CAM    | An e-infrastructure for software, training and consultancy in simulation and modelling |  |  |
| РОР      | Performance Optimisation and Productivity                                              |  |  |
| COEGSS   | Center of Excellence for Global Systems Science                                        |  |  |

ETP 4 HPC

### Material science


- Material design at Exascale ullet
  - led by users CNR Modena E Molinari

key code developers in quantum materials simulations

- siesta
- **QUANTUMESPRESSO**
- **ECAM** 
  - Existing distributed CECAM community
  - Simulations all the way from atomic scale to continuum level (including biological systems, soft materials)
  - Open to exa-scale, but not main driver still plenty of important work to do at peta-scale in our disciplinary areas



- **NOMAD** : Novel Material Discovery
  - Data base, research tools, visualization, analytics





YaMbo 🏎





15

## Earth science

• ESiWACE



managed by DKRZ

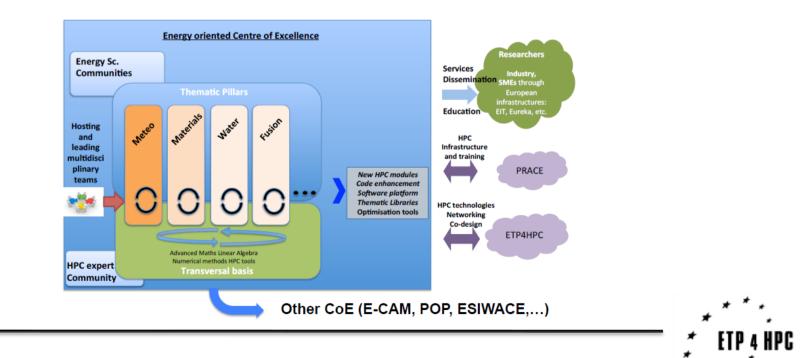


- improve the efficiency and productivity of numerical weather and climate simulation
- addressing challenges : scalability, usability, exploitability
- CoeGSS : Centre of Excellence for Global Systems Science



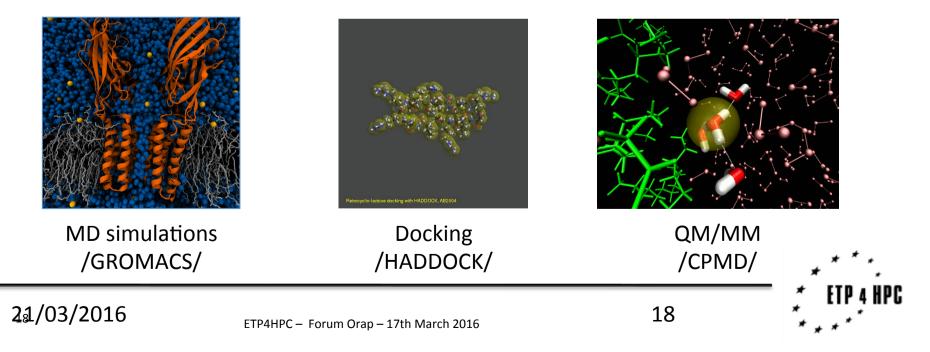
Centre of excellence

- managed by HLRS and University of Potsdam
- Build up a broad simulation service portfolio on synthetic populations
- Create demonstrators to simulate and analyse : Pandemics, Urbanization, Social Habits, Green Growth




## Energy

- Energy oriented Center of Excellence
  - managed by CEA




- production, storage and distribution of energy
- models for weather, material, water, fusion



## Bioscience

- BioExcel : Center of Excellence for Biomolecular Research
  - managed by KTH
  - Improve the performance, efficiency and scalability of key codes
    - GROMACS (Molecular Dynamics Simulations)
    - HADDOCK (Integrative modeling of macro-assemblies)
    - CPMD (hybrid QM/MM code for enzymatic reactions, photochemistry and electron transfer processes)



### Transversal



- POP : Performance Optimization and Productivity
  - managed by BSC
  - Services provided
    - Precise understanding of application and system behavior
    - Suggestion/support on how to refactor code in the most productive way
  - For academic AND industrial codes and users

#### ? Application Performance Audit

- Primary service
- Identify performance issues of customer code (at customer site)
- Small Effort (< 1 month)

### ! Application Performance Plan

- Follow-up on the service
- Identifies the root causes of the issues found and qualifies and quantifies approaches to address the issues
- Longer effort (1-3 months)

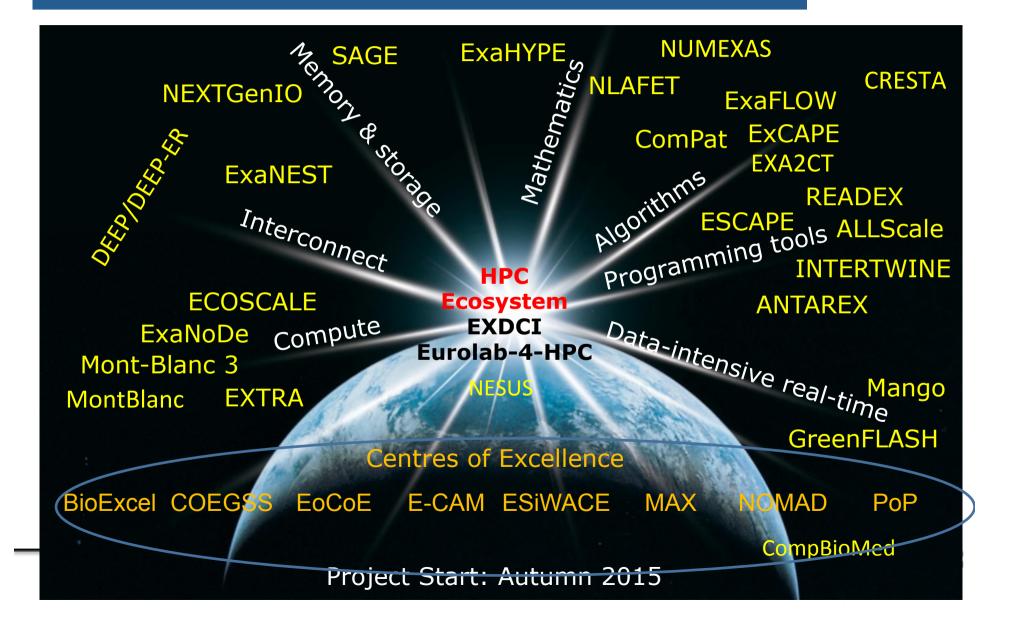
### ✓ Proof-of-Concept

- Experiments and mock-up tests for customer codes
- Kernel extraction, parallelization, mini-apps experiments to show effect of proposed optimizations
- 6 months effort



### Support actions

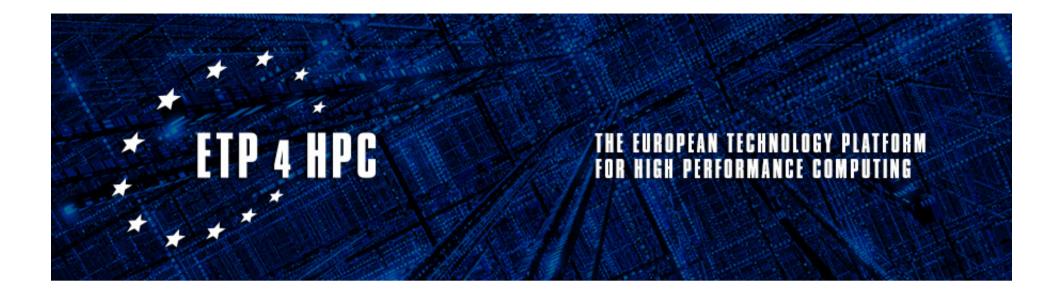
- EESI and EESI2
  - run by European experts from 2008 to 2015
  - important recommendations covering technology, applications, algorithms
  - http://www.eesi-project.eu/
- EXDCI
  - managed by PRACE and ETP4HPC
  - started in Sept 2015
  - supporting:
    - roadmap : technical (SRA), scientific cases
    - cross cutting topics : technical topics, training, SMEs
    - international cooperation
    - monitoring








### The European HPC Project Landscape






### More in progress

- 2 calls in Work Programme 2016-2017
  - FET HPC 1 2016 : Co-design of HPC systems and applications
    - budget : 41 M€ deadline : 27 September 2016
  - FET HPC 2 2017 : Transition to Exascale Computing
    - 5 subtopics :
      - High productivity programming environments for exascale
      - Exascale system software and management
      - Exascale I/O and storage in the presence of multiple tiers of data storage
      - Supercomputing for Extreme Data and emerging HPC use modes
      - Mathematics and algorithms for extreme scale HPC systems and applications working with extreme data
    - budget : 40 M€ deadline : 26 September 2017
- On-going discussion on Work Programme 2018-2020 of Horizon2020





# SRA

### a multi-annual roadmap towards Exascale High-Performance Computing Capabilities

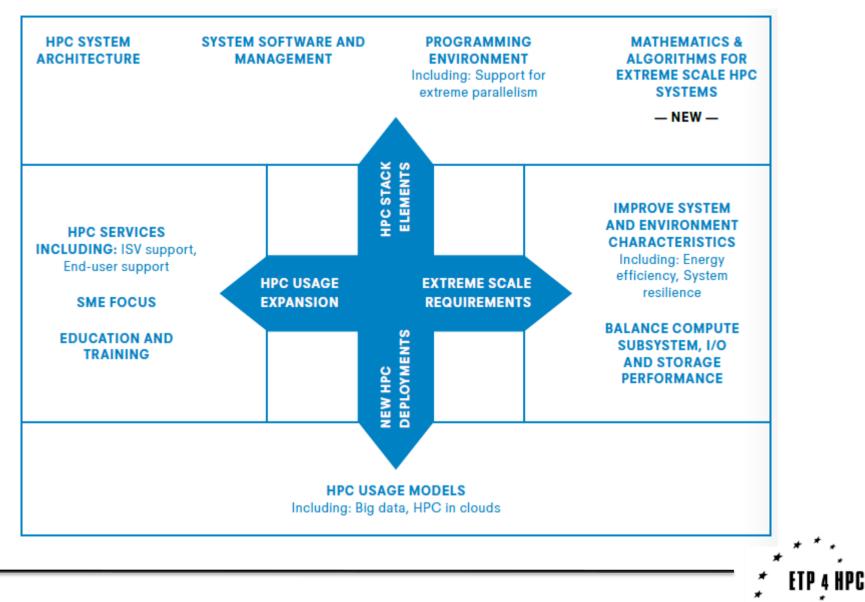


### www.etp4hpc.eu/sra

ETP4HPC European Technology Platform for High-Performance Computing

Strategic Research Agenda 2015 Update

European Technology Multi-annual Roadmap Towards Exascale Update to 2013 Roadmap




## Priorities

- There is a demand for R&D and innovation in both extreme performance systems and mid-range HPC systems
  - Scientific domain and some industrial users want extreme scale
  - ISVs and part of the industry expect more usability and affordability of midrange system
- The ETP4HPC HPC technology providers are also convinced that to build a sustainable ecosystem,
  - their R&D investments should target not only the exascale objective (too narrow as a market)
  - an approach that aims at developing technologies capable of serving both the extreme-scale requirements and mid-market needs can be successful in strengthening Europe's position.



### 4 dimensions of the SRA



### Transversal issues to be addressed

- Three technical topics:
  - Security in HPC infrastructures to support increasing deployment of HPDA
  - Resource virtualisation to increase flexibility and robustness
  - HPC in clouds to facilitate ease of access
- Two key elements for HPC expansion
  - Usability at growing scale and complexity
  - Affordability (focus on TCO)



## How was the SRA been built?

8 Workgroups covering the 8 technical focus areas:

### SRA 2015 technical focus areas

- HPC System Architecture and Components
- Energy and Resiliency
- Programming Environment
- System Software and Management
- Big Data and HPC usage Models
- Balance Compute, I/O and Storage Performance
- Mathematics and algorithms for extreme scale HPC systems
- Extreme scale demonstrators
- 48 ETP4HPC member orgs/companies involved in these workgroups
- Members named 170 individual experts to contribute, 20-30 per working group

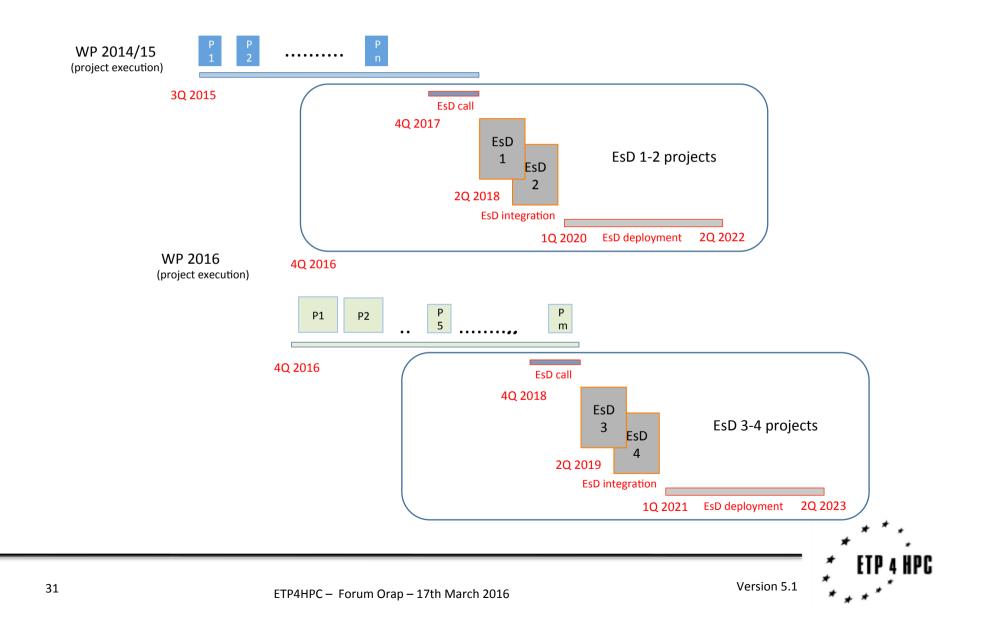


### HPC System Architecture, Storage and I/O: milestones

| M-ARCH-1: New HPC processing units enable<br>wide-range of HPC applications.                                | 2018      |
|-------------------------------------------------------------------------------------------------------------|-----------|
| M-ARCH-2: Faster memory integrated with HPC processors.                                                     | 2018      |
| M-ARCH-3: New compute nodes and storage architecture use NVRAM.                                             | 2017      |
| M-ARCH-4: Faster network components with 2x signalling rate (rel. to 2015) and lower latency available.     | 2018      |
| M-ARCH-5: HPC networks efficiency improved.                                                                 | 2018      |
| M-ARCH-6: New programming languages support in place.                                                       | 2018      |
| M-ARCH-7: Exascale system energy efficiency goals<br>(35kW/PFlops in 2020 or 20 kW/Pflops in 2023) reached. | 2020-2023 |
| M-ARCH-8: Virtualisation at all levels of HPC systems.                                                      | 2018      |
| M-ARCH-10: New components / disruptive architectures for HPC available.                                     | 2019      |

| M-BIO-1: Tightly coupled Storage Class Memory IO<br>systems demo.                     | 2017 |
|---------------------------------------------------------------------------------------|------|
| M-BIO-2: Common I/O system simulation framework established.                          | 2017 |
| M-BIO-3: Multi-tiered heterogeneous storage system demo.                              | 2018 |
| M-BIO-4: Advanced IO API released: optimised for multi-tier<br>IO and object storage. | 2018 |
| M-BIO-5: Big Data analytics tools developed for HPC use.                              | 2018 |
| M-BIO-6: 'Active Storage' capability demonstrated.                                    | 2018 |
| M-BIO-7: I/O quality-of-Service capability.                                           | 2019 |
| M-BIO-8: Extreme scale multi-tier data management tools available.                    | 2019 |
| M-BIO-9:Meta-Data + Quality of Service exascale file i/o demo.                        | 2020 |
| M-BIO-10: IO system resiliency proven for exascale capable<br>systems.                | 2021 |



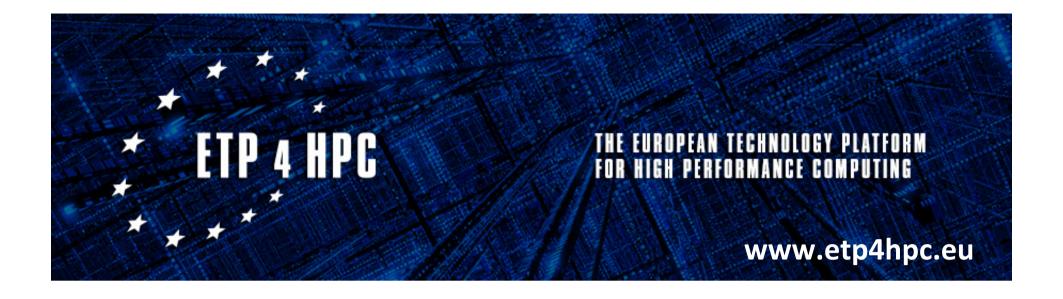

### **Extreme-Scale Demonstrators**

### • Characteristics

- Complete prototype HPC systems
- high enough TRL to support stable production
- using technologies developed in the previous projects
- based on application system co-design approach
- large enough to address scalability issues (at least 1/10 of top performance systems)
- Two project phases:
  - phase A : development, integration (of results from R&D projects) and testing
  - phase B : deployment and use, code optimisation, assessment of the new technologies



### Extreme scale Demonstrators call-integration-deployment schedule




### Next SRA-related events – some thoughts

### • HPC summit/May 2016

- needs to be focussed primarily on the EsD topic (we need to make some progress here), not so much on the dissemination
- at this event the three pillars for the EsD mission (CoE, HPC centres and the FETHPC1 project speakers) need to get together...
- ISC16
  - might be a general dissemination and discussion event
  - by then we have some feedback hopefully
  - depending on how much progress we make with BDVA we could set up a few "focussed discussions", e.g. on HPC and HPDA, EsDs, some statistics on the feedback received, news on influences from latest application trends....etc.





## Coming up initiatives



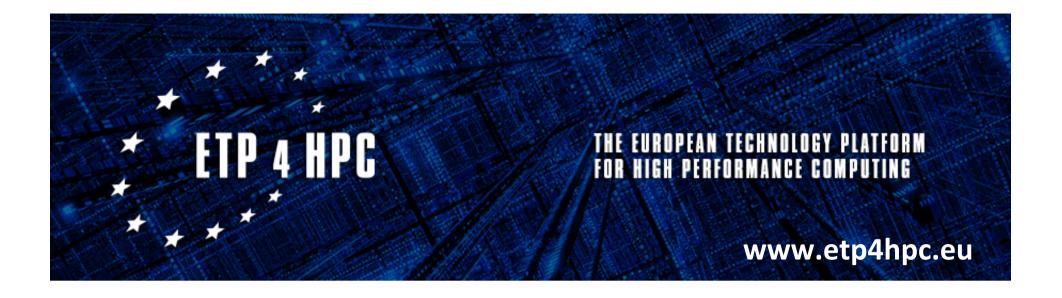
**IPCEI** 

IMPORTANT PROJECT OF COMMON EUROPEAN INTEREST (PCEI) NHGH PERFORMANCE COMPUTING ADG DATA ENABLED APPLICATIONS (PCEI-HPC-BDA) European Strategic Positioning Paper

- Initiative led by Member States
  - LU (leader), FR, SP, IT
  - Important Project of Common European Interest
    - objective so important that some regulations can be overridden : aggregation of fundings from EC sources, national sources and private origine to support the project, state aids regulations, competition regulation
- Topic : HPC and big data enabled applications
  - 3 pilars : technology, infrastructure, large scale pilots
  - smart mobility, industry 4.0, smart space, smart agriculture, smart cities, fin tech
- Budget foreseen : 6 B€



### New EC communication


- « European Cloud Initiative Building a competitive data and knowledge economy in Europe »
- 3 directions :
  - European Open Science Cloud
  - European Data Infrastructure
  - Widening access and building trust

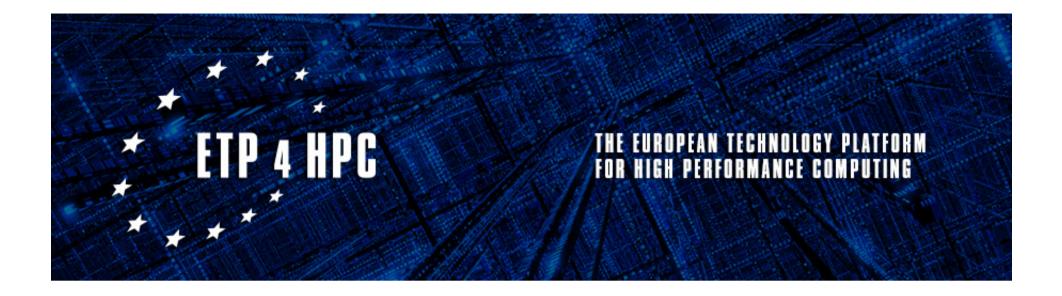


### New ETP4HPC activities

- Working group Energy Efficient
  - how to address this issue globally, international discussion on EE
- Working group Software
  - addressing issues as : scalability, integration, reuse, software engineering for parallel programs
- Contact group industrial users
  - increase the exchange on technological evolution impact and industrial requirements
- Interlock with Big Data cPPP






## Conclusion



### Summary

- Horizon2020 HPC plan is put in place
- You can comment on the current SRA <u>http://www.etp4hpc.eu/strategic-research-agenda/</u>
- You are welcome to participate in WG or other activities
- We hope that new initiative will accelerate HPC development in Europe





### THANK YOU!

## For more information visit <u>www.etp4hpc.eu</u> contact: office@etp4hpc.eu



