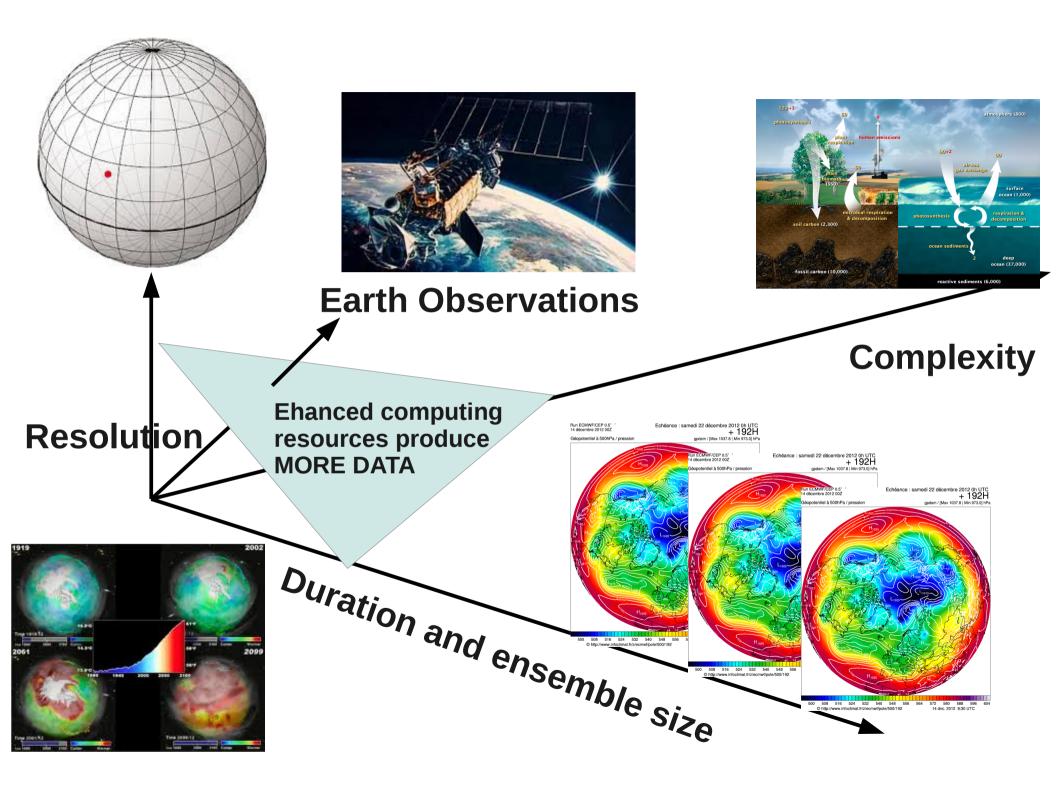


Coopérations internationales, simulations climatiques et masse d'informations

Sous titres: Les "challenges" en termes d'accessibilité et d'usage

Sébastien Denvil (IPSL/CNRS)

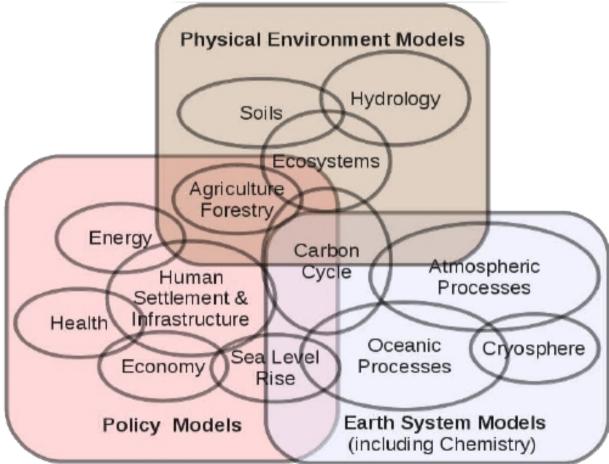


<u>Outline</u>

- Motivation
 - Drowning in data, with more to come.
- CMIP5 as an example of the current technology
 - Different views; institutional, federated, subsetted
 - Have we hit the limit for downloading?
 - Metadata infrastructure
- The future
 - Taking the computing to the data
 - Taking the computing and the data to the data
 - Scaling to the future requires standards and conformance

To keep in mind

"the potential to interpret, compare and reuse climate information results is strongly related to the quality of their description"


Computation useless if results cannot be stored/distributed/read

<u>Many, many processes, many,</u> <u>many communities !</u>

Interconnected communities, all needing access to (some) of the data!

IPCC AR5 variable counts

	1 hour	3 hour	6 hour	daily	month	annual	totals
aerosol	0	0	0	0	81	0	81
atmosphere	75	101	9	86	184	0	455
land	0	3	0	2	59	0	64
land ice	0	0	0	2	13	0	15
ocean	0	1	0	3	116	0	120
biogeochemistry	0	0	0	0	88	71	159
sea ice	0	0	0	4	47	0	51
totals	75	105	9	97	588	71	945

Overpeck et al. Science 2011;331:700-702

400 Fig. 2 The volume of Model Satellite/Radar worldwide climate In Situ/Other 350 data is expanding rapidly, creating 300 challenges for both physical archiving 250 and sharing, as well [>]etabytes (1,000 as for ease of 200 access and finding what's needed, 150 particularly if you are not a climate 100 scientist. 50 (Their words, not mine!) 2010 2015 2020 2025 Year

We might want to write more data

Another way of looking at this:

CMIP5 output at the IPSL was about 3TB / day in average (2 years).

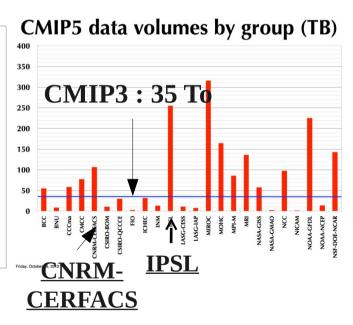
We wanted to have pick writing at 6 TB/day sometime.

Actually can't wrote at full model capacity every day.

- We had to stop simulations from time to time to be able to cope with data production !
- Archive and network were the real constraints! Already!

& that's before considering users, usability etc.

Now we know that archive and network are constraints, let's turn to accessibility, affordability, and usability.



A one slide guide to CMIP5 from a data perspective

Fifth Climate Model Intercomparison Project (CMIP5) World Climate Research Programme WCRP- WGCM Involves all the major climate modelling <u>centres</u>. **Original Timing:** o(2) PB of requested output from 20+ modelling centres finished early 2010! **Actual Timing?** Years late.

101 experiments61 model variants59,000 datasets!4.5 million files2 PB in global archive.Unknown PB locally!

PCMDI-led, Community developed (GO-ESSP) s/w infrastructure for data delivery: **Earth System Grid Federation**

"Without substantial research effort into new methods of storage, data dissemination, data semantics, and visualization, all aimed at bringing analysis and computation to the data, **rather than trying to download the data** and perform analysis locally, it is likely that the data might become frustratingly inaccessible to users"

A National Strategy for Advancing Climate Modeling, 2012

Why did they think that?

Semantic Analysis: "substantial research effort" "new methods" "computation to data" "rather than trying to download" "frustratingly inaccessible" (to whom?)

...and it's going to get worse, ... more computing ...

<u>« Nor any I should clone » ?</u>

You can buy disk, but, can you populate it?

Network bandwidth limits what we can write (e.g. CMIP5) Network bandwidth limits what we can deliver for download

- IPSL currently 1 Gb/s
- (Theoretical maximum: 10.5 TB/day. Practical Maximum ~ 0.3 peak)
- It'll go faster (Gilder's Law), fast enough ?

You can buy disk, but, can you afford it?

Decadal Expectations: Kryder and Kim 2009

Storage Capacity	~ o(x100)		
Cost/TB	~ o(/100)		
Energy/TB	~ o(/10)		
Energy Cost/TB	~ o(x10)		

For us (about 1 PB in 2014) at constant funding, we could afford 27 PB (disk) in 2024.

We're not at constant funding. Yet. Are you?

Coming back to National Academy

Analysis !

"substantial research effort" "new methods" "computation to data" "rather than trying to download" "frustratingly inaccessible" (to whom?)

Download ?

 \rightarrow What?

- (There is a lot of data, how do I choose?)
- \rightarrow How?

is-enes

(Where to? How do I make it go

fast, multiple files, fault tolerant?)

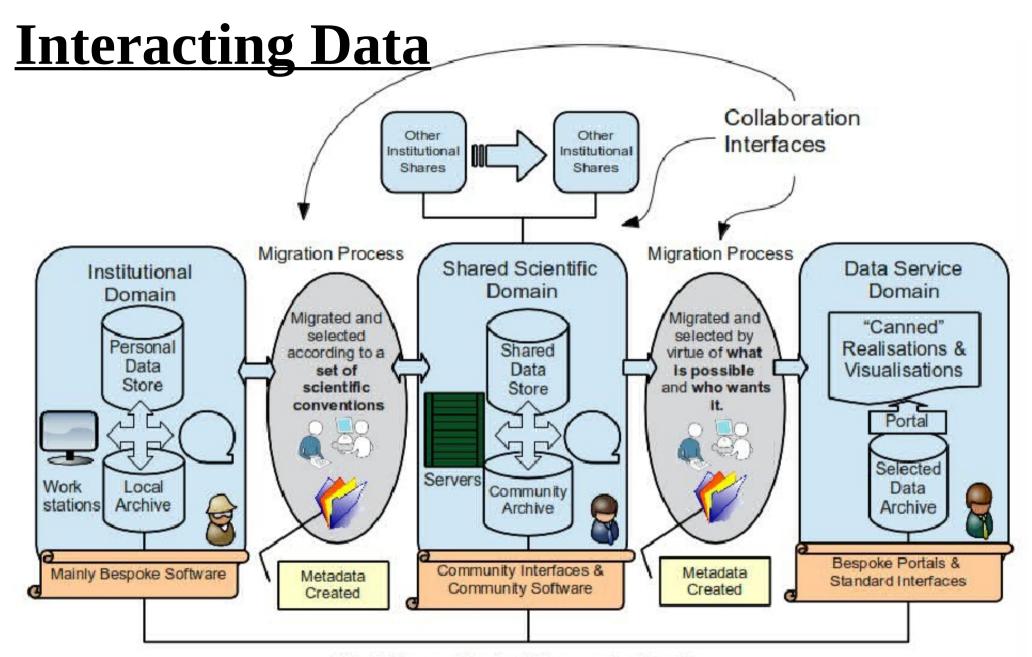
Computation to Data

Nice idea, but

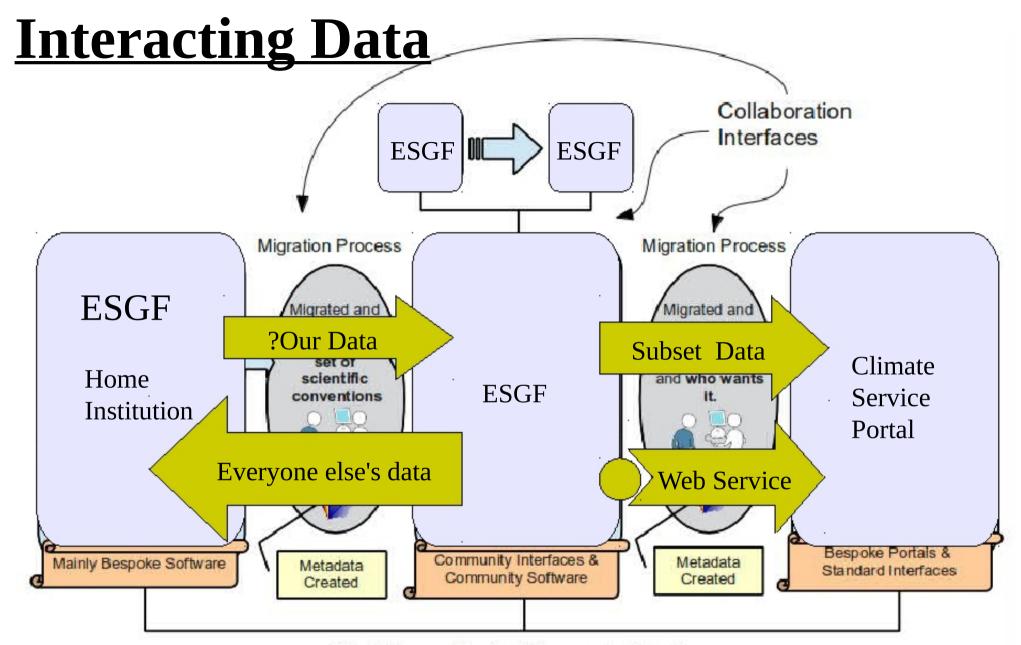
- \rightarrow data in multiple places.
- \rightarrow distributed analysis
- → distributed analysis
- environments

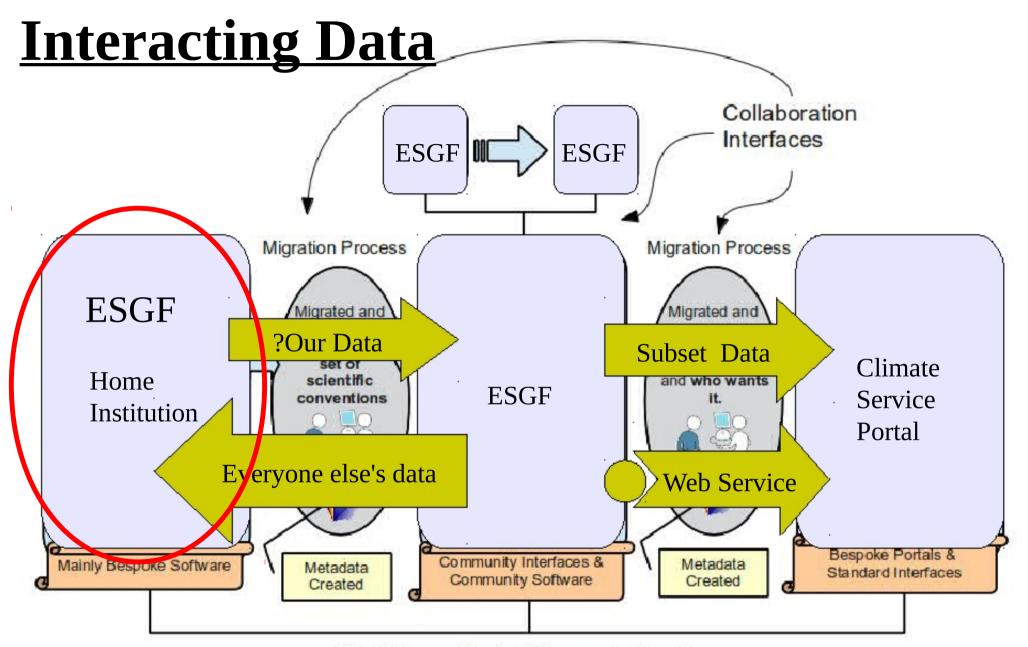
New methods/research effort

==>


- \rightarrow What?
 - Multiple activities
 - ES-DOC
- \rightarrow How & Computation to Data?
 - Avoid duplication?
 - EXARCH
 - CICLAD

... how we interact with data ...





My/Your Data Environment

At your home institution, you: \rightarrow Have (some) control over your software environment

- Favourite packages, e.g. IDL
- Familiar Linux

 \rightarrow Can buy/arrange more storage / compute on varying time-scales ... can optimise ...

 \rightarrow Are responsible for deleting / preserving your own data

 \rightarrow Are likely to be duplicating data others have already downloaded in your own institution ... let alone within a larger collaboration.

is-enes

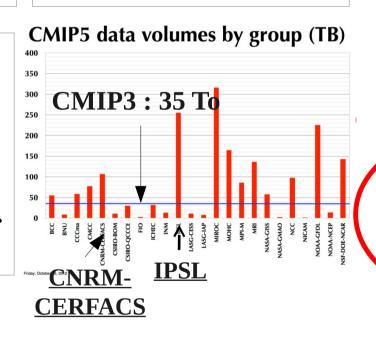
We all like control!

We all like the (illusion?) that we can scale our resources as necessary.

We all lose/destroy/duplicate data.

Most of us do our HPC remotely.

Some of us do our analysis remotely. Why not more of us?

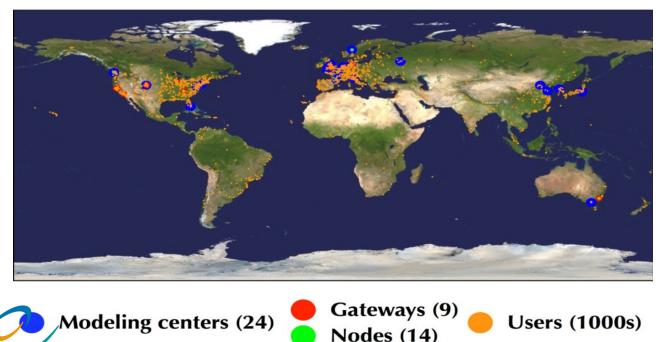


A one slide guide to CMIP5 from a data perspective

Fifth Climate Model Intercomparison Project (CMIP5) World Climate Research Programme WCRP- WGCM Involves all the major climate modelling <u>centres</u>. **Original Timing:** o(2) PB of requested output from 20+ modelling centres finished early 2010! **Actual Timing?** Years late.

101 experiments61 model variants59,000 datasets!4.5 million files2 PB in global archive.Unknown PB locally!

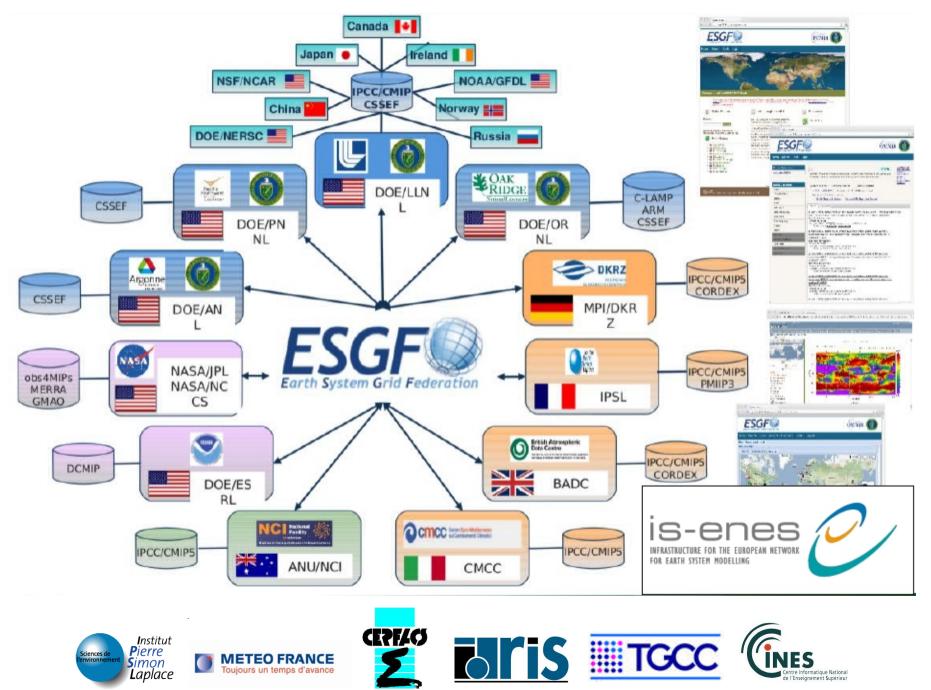
PCMDI-led, Community developed (GO-ESSP) s/w infrastructure for data delivery: Earth System Grid Federation



Worldwide distributed system

The **Earth System Grid Federation (ESGF)** is a multi-agency, international collaboration of persons and institutions working together to build an <u>open source</u> software infrastructure for the management and analysis of Earth Science data on a global scale

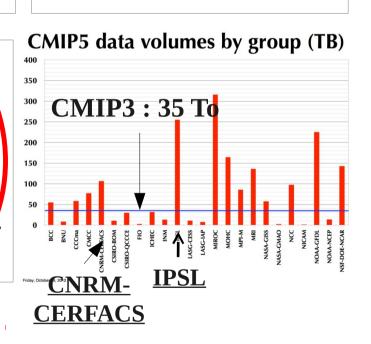
- Software development and project management: ANL, ANU, **<u>BADC</u>**, <u>**CMCC**</u>, <u>**DKRZ**</u>, ESRL, GFDL, GSFC, JPL, <u>**IPSL**</u>, ORNL, LLNL (lead), PMEL, ...
- Operations: tens of data centers across Asia, Australia, Europe and North America



Friday, October 26, 2012

IPCC AR5 distribution

Worldwide distributed system



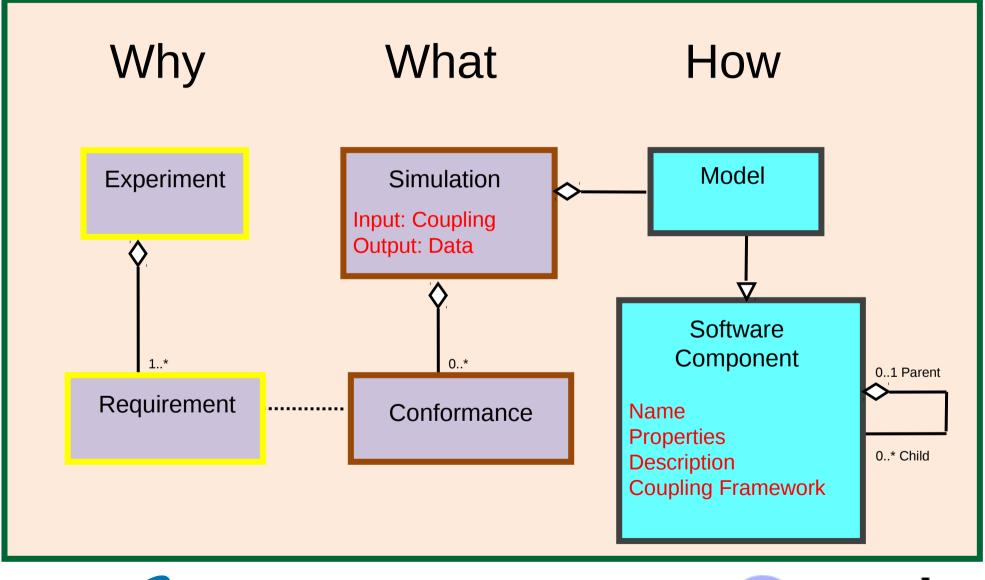
A one slide guide to CMIP5 from a data perspective

Fifth Climate Model Intercomparison Project (CMIP5)

101 experiments
61 model variants
59,000 datasets!
4.5 million files
2 PB in global archive.
Unknown PB locally!

World Climate Research Programme WCRP- WGCM Involves all the major climate modelling <u>centres</u>.

Original Timing: o(2) PB of requested output from 20+ modelling centres finished early 2010! **Actual Timing?** Years late.


PCMDI-led, Community developed (GO-ESSP) s/w infrastructure for data delivery: **Earth System Grid Federation**

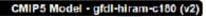
A climate simulation

http://earthsystemcog.org/projects/es-doc-models/

es-

Earth System Documentation

CMIP5 – Browse Metadata


Earth System Doct	umentation - Viewer CMIP5	i Model - gfdl-hiram-c180 (v2) 🗱 🛠
CMIP5 Mode	el - gfdl-hiram-c180	Model Experiment
Overview	Citations Contacts	Components
Atmosphere Convection Cloud Turbulence Cloud Scheme Dynamical Core Advection Orography & Waves Radiation Land Surface Albedo Energy Balance Lakes RiverRouting Snow Soil Heat Treatment		Land Surface Properties Basic Approximations : Physics - Full 1D Vertical Soil And Heat With Parameterized Ground Water,rivers And Lakes; Vegetation - Princeton Scheme Conservation Of Properties > Water Storage Method : Other Conservation Of Properties > Water Treatment : Storage Coupling With Atmosphere : Implicit Genealogy : Other Land Cover Types : Bare Soi Land Cover Types : Lake Land Cover Types : Othar Land Cover Types : Compute Scheme List Of Prognostic Variables : Canopy Skin Temperature
Hydrology Vegetation		List Of Prognostic Variables : Canopy Snow Content List Of Prognostic Variables : Canopy Water Content
······································	List Of Prognostic Variables : Other List Of Prognostic Variables : River Water Storage	
ES-DOC "Common Information Model" Javascript plugin linking data to remote documentation		List Of Prognostic Variables : Snow Mass List Of Prognostic Variables : Snow Water Content
		List Of Prognostic Variables : Soil Ice Content List Of Prognostic Variables : Soil Moisture
		List Of Prognostic Variables : Soil Temperature List Of Prognostic Variables : Surface Skin Temperature
		Tiling : Common To AI LS Subcomponents Tiling Method : Dynamic Time Stepping Framework > Method : Use Atmosphere Time Step

Earth System Documentation - Viewer (v0.8.7.1)

is-enes

FOR EARTH SYSTEM MODELLING

EUROPEAN NETWORK

CMIP5 - Comparing and contrasting

Project CMIP5 +

Comparator Model Component Properties 🛊

Open

Step 1 : Select Model Component Properties

v0.9.0.0

1. Select Models	AILC
ACCESS1.0	view
ACCESS1.3	view
BCC-CSM1.1	view
CFSV2-2011	view
CMCC-CESM	VIBW
CMCC-CM	view
CMCC-CMS	view
CNRM-CM5	View
CSIRO-MK3.6.0	view
EC-EARTH	view
GFDL-CM2P1	view
GFDL-CM3	view
GFDL-ESM2G	VIEW
GFDL-ESM2M	view
GFDL-HIRAM-C180	view
GFDL-HIRAM-C360	view
GISS-E2-H	view
GISS-E2-H-CC	view
GISS-E2-R	view
GISS-E2-R-CC	view
GISS-E2CS-H	view
GI\$\$-E2C\$-R	view
HADCM3	view
HADGEM2-A	view
	-

-er

FOR EARTH SYSTEM MODELLING

INFRASTRUCTURE FOR THE EUROPEAN NETWORK

es

2. Select Components	νN		
Aerosols			
Emission And Concentration			
Model			
Transport			
Atmosphere			
Convection Cloud Turbulence			
Cloud Scheme			
Cloud Simulator	•		
Dynamical Core			
Advection			
Orography And Waves			
Radiation			
Other	•		
Atmospheric Chemistry			
Emission And Conc	•		
Gas Phase Chemistry	•		
Heterogen Chemistry	•		
Stratospheric Heter Chem	•		
Tropospheric Heter Chem	•		
Photo Chemistry	•		
Transport			
Land Ice			
Glaciers	•		
Sheet	•		
Ice Sheet Dynamics	•		
Shelves	•		
P	-		

	Help	Reset	Next
3. Select	Properties		All 🗌
Annalia	Scheme		
	Framework		
	Species		
	k Species		
	mework		
	dal Framework		
	dal Species		
	eme Characteritics		
	eme Type		
	cles		
Couplin	ng With		
	ase Precursors		
ocean b	biogeochemical co	upling	
Proces			
Standa	rd Properties		
	tions		
	Location		
	Title		
Des	cription		
Lon	g Name		
PLE	mail Address		
PLN	lame		
Sho	art Name		
vegetat	ion model coupling	9	

CMIP archive (aka disk) Metadata

Two levels: the way we bundle the files (the layout on disk), and the content of the files (the layout of metadata) within them!

The Layout: Directory Reference Syntax (DRS)

Key to supporting tools which manage the (millions of files), and provide services. Key to a RESTful API ...

The Files Constrained CF (Climate Model Output Rewriter, CMOR, and tables).

- Define layout *in* files: so tools can manipulate the file contents.

key role for netCDF climate forecast
 conventions and additional (project)
 metadata resquirements. That get just
 the bundle « you »

... it's all about supporting automation! Key to usability!

So we've just seen how ESGF works, how much of that will apply at exascale?

New methods/research effort

→ Computation to Data?
 Avoid duplication?
 EXARCH
 CICLAD

ExArch

	G8 funded research project aiming at 10	Web processing services		
	years horizon:	Query syntax		
	ExArch: Climate analytics	Common information model		
	on distributed exascale	Processing operators and quality		
	data archives.	control		
	STFC (NCAS), UCLA, U. Toronto, DKRZ, Princeton U., IPSL, CMCC	Scientific diagnostics		
		EO data for model evaluation		
	DIXIX, I IIIICEIOII O., IF JL, CIVICC	Grid computing		

"Bring the computing to the data"

- \rightarrow need faith in the data (QC)
- \rightarrow need to know what the data is (metadata)

→ exploit existing operators (tooling)

Requires coordination between data repositories ...

High Performance Data (HPD) Analysis Environment

Mutualized

Jointly delivered by → IPSL laboratories. Joint users (initially): → IPSL community Joint users (target): → French Academic community

Analysis capabilities

Environmental Data Compute Service Web Service Provision for :

- → Climate Science
- \rightarrow Earth Observation
- \rightarrow Environmental studies

Access services to ESGF System Users don't have to find, download, and keep up to date the data they need

CMIP5, CORDEX Reanalysis, Obs4MIPs PMIP

Big DATA Platform

Collaboration Environment

- \rightarrow Access to Curated Archive.
- → Large shared "Group Work Spaces"
- \rightarrow climate analysis enabled system
- \rightarrow + 1 PB of high performance disk coupled to hundreds of cores configured for analysis

<u>Summary</u>

 \rightarrow We might find the path to exascale is constrained by storage as much as by compute!

- \rightarrow Collaboration depends on metadata, with many different levels involved.
- \rightarrow The dependency on metadata will only grow as the scale of our archives increase.
- \rightarrow We will need not only to move computation to data, but aggregate our data collections
 - \rightarrow which requires dedicated "HPD" platforms like CICLAD
- \rightarrow It is likely that those who cannot conform to shared standards will (should) be left working on their own, unable to enter their data into federated and shared systems.

