Processor Evolution:
What to Prepare
Application Codes For?

Orap Mini-Workshop

Francois Bodin, Henri Calandra, Alain Refloc h

Vonrar



Migrating application codes may a lot look like

In an old house, when replacing one wall tile you may
end with getting the wall tore down.

(Thomas Guignon)



Mini-Workshop Attendees

Alimi Jean-Michel,
Observatoire de Paris

Colin de Verdiéere
Guillaume, CEA DAM

Courteille Francois, Nvidia

Dinh Quang, Dassault
Aviation

Dolbeau Romain, CAPS
entreprise

Fournier Yvan, EDF

Grigori Laura, Inria
Rocquencourt

Guignon Thomas, IFPEN

Kern Michel, Inria (External
contributor)

Meurdesoif Yann, CEA

Namyst Raymond, Inria
Bordeaux

Petiton Serge, Université de
Lille 1, Sciences et
Technologies

Ricoux Philippe, Total
Thierry Philippe, Intel



Context

The Power Wall has led to the design of new parallel multi-core and
many-core architectures

— Achieving scaling is the challenge

— Application codes (will) have to exhibit massive parallelism at the node
level

The evolution of processors is very strongly and deeply impacting
— Code development

— Maintenance practice

— Numerical methods

Bill Harrod from the Department of Energy (DOE): "Uncertainty
threatens future of computing, the world has changed; technology is
changing at a dramatic rate; The IT marketplace is also changing
dramatically, PC sales have flattened, Handhelds dominate growth,
HPC vendor uncertainty; Data volume and variety explosion”



Code Main Matters

Code validation

Surviving at least 4 generations of (very different)
machines

Homogeneous programming is at an end
Sophisticated runtime techniques required
Data structure organization

O sub-systems / data management
Application development process

Very likely that in some cases achieving scalability
will require going back to basics,

— i.e. physics, instead of forcefully trying to adapt legacy
codes



Warning

It should be noted that the first factor driving
an application development is its
ecosystem and its deployment constraints



[R1] Validation

* Implemented as a continuous process as
recommended

— Validation must ensure reproducibility of the
result without imposing a bit to bit
comparison of the result

— For instance implemented by frameworks
such as Hudson

* This issue is a primary consideration when
migrating or designing a code



[R2] Data Locality

We are now very very far away from the 24 Bytes per Flop of the
CRAY1

— Complex memory hierarchies

Internal data structures must be designed in order to facilitate
adaptation to the architecture of the computer

— E.g. array of structures versus structure of arrays

Serializable data structures are preferable since at one point they
may have to migrate to a different storage unit

— E.g. use of accelerators, saving data structures in NVM, ...

C++ templates can be one of the implementation technique
— But this topic is controversial due to the complexity in code maintenance



[R3] Scalability

» Collective operations (e.g. reduction) do
not scale well enough
— When possible they should be avoided

* Neighbor data exchanges are to be
preferred

* Choosing the solver is crucial and must be
carefully considered



[R4] Programming Languages

Programming language choice
— Must first be performed according to developers background
— Fortran can still be a good choice

— Mixing languages (e.g. Fortran and C++) is an option to cover
functional needs

— Code architectures more important than the language

Engineering consideration should be the one guiding the
choices here

— E.g. portability, persistence, efficiency, libraries, ...

Combining languages in a given application requires careful
thinking
— e.g. Libraries, build complexity, compiler adherence, ...



[R5] Domain Specific Approaches

« May provide a level of abstraction appealing to scientists

— Complexity of standard programming is likely to distract
scientists from their scientific discovery goals

 Embedded Domain Specific Language in a general purpose
host language (e.g. Fortran)

— Embedded DSL provides extra semantic information and/or code
generation strategy

— E.g. OpenACC

« Embedded DSL in some cases are not enough to provide a
high level algorithmic abstraction
— The data model is the one of the host language and does not

carry the high level semantic required (e.g. an array is not a
matrix)



[R6] Development Process
and Infrastructure

The cost of a bug increases with its late discovery

This is not new, but implementing massive parallel execution make
code development extremely complex

— Pro-active techniques needed
— Applications embed bug detection, traces generation, ...

The development process must integrate software engineering best
practices such as

— Control using automatic tools (e.g. continuous integration)
— Configuration management

— Performance measurement integrated inside the code

— Unitary test

— Non-regression testing



[R7] Fault Tolerance

* Fault tolerance as envisioned for Exascale systems is
not presently an important consideration

« But the increase in the cost of IO pushes

— To consider strategies that minimizes the volume of data
needed for implementing a checkpoint restart technique

« Applicative specific techniques are the most promising
— It is believed that they are the only one that may scale in
the long run

— Does not mean that system/runtime support is not
necessary, on the contrary



IR8] 1/0

« Data management and I/O performance will
strongly influence the design of applications

— Requires a global view on the data life cycle

« Designing the applications requires finding
tradeoffs between
— In-situ vs. ex-situ processing
— Selecting data format
— Access policy
— Data relocation
— Format changes, etc.



[R9] Pre and Post
Processing Integration

* Pre and post processing may frequently
become the application bottlenecks

— In-situ analysis to decrease the volume of
data to transfer out of the machine

* The scientific discovery process must be
particularly well understood to design a
long-term solution



[R10] Code Architecture

The code architecture
— Must be mastered and enforced
— Flaws in the architecture and its dissolution over time have expensive
consequences
Goal of the software architecture
— Modular structure
— Help re-writing, modifying the fast changing part of the code
— Help mixing technologies and competencies of the application development teams
— Provide external APls to improve usability

— Internal API to enforced structured development and best practices
— Allow the development of a machine specific with more lasting generic versions
Allow to plug-and-play solvers so they can be chosen according to the

execution platform

— This consideration is not only related to code architecture, it must be consistent with
numerical schemes



[R11] Coding Rules

* They are a set of rules to guide developers
— Specific to each application and ecosystem

— Their use aims at preserving code efficiency,
maintenance and evolution capabilities

— Specifies preferred code writing style (e.qg.
naming conventions, ...)

e For the HPC domain

— Typically the rules would include code structures
that favors vectorization, data locality, efficient
parallel execution, etc.



[R12] Libraries

The use of external libraries is recommended but must
be chosen with care

Use as much as possible native libraries (or open
source ones)

— Very well optimized

Don’t use old algorithms that have been designed for
sequential execution with no memory hierarchy

— E.g. 1986 Numerical Recipees

Choose long lasting libraries or easily replaceable
ones to limit adherence to a given platform



[R13] Runtimes

* Runtimes provide intermediate resource
management services not directly provided
by the operating systems
— E.g. StarPU, X-Kaapi, MPC, ...

— Adapt to run / machine configurations

« Growing number of threads

— Hierarchical techniques needed to avoid high
thread management overhead

— However, this evolution may lead to less accurate
scheduling with more workload unbalancing



[R14] Debugging

* Debugging is a sensitive issue difficult to integrate
from the start to project
— Usually a post-mortem technique however ease of

debugging is usually a consequence of the
development methodology

— Integration in the application of the right observation
tools (e.g. tracing capabilities, visualization of code
data structure)

* The use of tools such as Valgrind etc. is
recommended even if the code execution incurs a
large slowdown (x10)

— Detection of memory leaks, ...



[15] Vector and Data Parallelism

Vector capabilities contribute to a large part
of the performance of current CPU
— E.g. 80% on an Intel Xeon Phi

— Data parallelism to use accelerators (i.e. SIMT) is
important

The use of such parallelism cannot be left to
compilers alone

— Code writing rules can greatly help to achieve
automatic vectorization by compilers

— Use of vector intrinsics is not advised



[16] Technological Watch

* Anticipating hardware evolution has a cost

— Especially since current uncertainty generates
multiple tracks

* Avoid the temptation of everything that's new
but do not procrastinate

— Technological watch is key to make the right
decisions

— Unfortunately it is always easier to justify new
user oriented features rather than a technology
evolution



[R17] Gathering Competencies

e |International and national initiatives are
such as "Maison de la Simulation”

* And other competence centers should be
used as much as possible



Conclusions and Perspectives

* Processor evolution toward massive
parallelism questions the codes evolution

» Migrating or a designing a new code for
the decade to come

— An extremely challenging tasks

— Will requires to make multiple algorithmic and
technological choices



