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Migrating application codes may a lot look like

In an old house, when replacing one wall tile you may
end with getting the wall tore down.

(Thomas Guignon)
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Context

The Power Wall has led to the design of new parallel multi-core and
many-core architectures

— Achieving scaling is the challenge

— Application codes (will) have to exhibit massive parallelism at the node
level

The evolution of processors is very strongly and deeply impacting
— Code development

— Maintenance practice

— Numerical methods

Bill Harrod from the Department of Energy (DOE): "Uncertainty
threatens future of computing, the world has changed; technology is
changing at a dramatic rate; The IT marketplace is also changing
dramatically, PC sales have flattened, Handhelds dominate growth,
HPC vendor uncertainty; Data volume and variety explosion”



Code Main Matters

Code validation

Surviving at least 4 generations of (very different)
machines

Homogeneous programming is at an end
Sophisticated runtime techniques required
Data structure organization

O sub-systems / data management
Application development process

Very likely that in some cases achieving scalability
will require going back to basics,

— i.e. physics, instead of forcefully trying to adapt legacy
codes



Warning

It should be noted that the first factor driving
an application development is its
ecosystem and its deployment constraints



[R1] Validation

* Implemented as a continuous process as
recommended

— Validation must ensure reproducibility of the
result without imposing a bit to bit
comparison of the result

— For instance implemented by frameworks
such as Hudson

* This issue is a primary consideration when
migrating or designing a code



[R2] Data Locality

We are now very very far away from the 24 Bytes per Flop of the
CRAY1

— Complex memory hierarchies

Internal data structures must be designed in order to facilitate
adaptation to the architecture of the computer

— E.g. array of structures versus structure of arrays

Serializable data structures are preferable since at one point they
may have to migrate to a different storage unit

— E.g. use of accelerators, saving data structures in NVM, ...

C++ templates can be one of the implementation technique
— But this topic is controversial due to the complexity in code maintenance



[R3] Scalability

» Collective operations (e.g. reduction) do
not scale well enough
— When possible they should be avoided

* Neighbor data exchanges are to be
preferred

* Choosing the solver is crucial and must be
carefully considered



[R4] Programming Languages

Programming language choice
— Must first be performed according to developers background
— Fortran can still be a good choice

— Mixing languages (e.g. Fortran and C++) is an option to cover
functional needs

— Code architectures more important than the language

Engineering consideration should be the one guiding the
choices here

— E.g. portability, persistence, efficiency, libraries, ...

Combining languages in a given application requires careful
thinking
— e.g. Libraries, build complexity, compiler adherence, ...



[R5] Domain Specific Approaches

« May provide a level of abstraction appealing to scientists

— Complexity of standard programming is likely to distract
scientists from their scientific discovery goals

 Embedded Domain Specific Language in a general purpose
host language (e.g. Fortran)

— Embedded DSL provides extra semantic information and/or code
generation strategy

— E.g. OpenACC

« Embedded DSL in some cases are not enough to provide a
high level algorithmic abstraction
— The data model is the one of the host language and does not

carry the high level semantic required (e.g. an array is not a
matrix)



[R6] Development Process
and Infrastructure

The cost of a bug increases with its late discovery

This is not new, but implementing massive parallel execution make
code development extremely complex

— Pro-active techniques needed
— Applications embed bug detection, traces generation, ...

The development process must integrate software engineering best
practices such as

— Control using automatic tools (e.g. continuous integration)
— Configuration management

— Performance measurement integrated inside the code

— Unitary test

— Non-regression testing



[R7] Fault Tolerance

* Fault tolerance as envisioned for Exascale systems is
not presently an important consideration

« But the increase in the cost of IO pushes

— To consider strategies that minimizes the volume of data
needed for implementing a checkpoint restart technique

« Applicative specific techniques are the most promising
— It is believed that they are the only one that may scale in
the long run

— Does not mean that system/runtime support is not
necessary, on the contrary



IR8] 1/0

« Data management and I/O performance will
strongly influence the design of applications

— Requires a global view on the data life cycle

« Designing the applications requires finding
tradeoffs between
— In-situ vs. ex-situ processing
— Selecting data format
— Access policy
— Data relocation
— Format changes, etc.



[R9] Pre and Post
Processing Integration

* Pre and post processing may frequently
become the application bottlenecks

— In-situ analysis to decrease the volume of
data to transfer out of the machine

* The scientific discovery process must be
particularly well understood to design a
long-term solution



[R10] Code Architecture

The code architecture
— Must be mastered and enforced
— Flaws in the architecture and its dissolution over time have expensive
consequences
Goal of the software architecture
— Modular structure
— Help re-writing, modifying the fast changing part of the code
— Help mixing technologies and competencies of the application development teams
— Provide external APls to improve usability

— Internal API to enforced structured development and best practices
— Allow the development of a machine specific with more lasting generic versions
Allow to plug-and-play solvers so they can be chosen according to the

execution platform

— This consideration is not only related to code architecture, it must be consistent with
numerical schemes



[R11] Coding Rules

* They are a set of rules to guide developers
— Specific to each application and ecosystem

— Their use aims at preserving code efficiency,
maintenance and evolution capabilities

— Specifies preferred code writing style (e.qg.
naming conventions, ...)

e For the HPC domain

— Typically the rules would include code structures
that favors vectorization, data locality, efficient
parallel execution, etc.



[R12] Libraries

The use of external libraries is recommended but must
be chosen with care

Use as much as possible native libraries (or open
source ones)

— Very well optimized

Don’t use old algorithms that have been designed for
sequential execution with no memory hierarchy

— E.g. 1986 Numerical Recipees

Choose long lasting libraries or easily replaceable
ones to limit adherence to a given platform



[R13] Runtimes

* Runtimes provide intermediate resource
management services not directly provided
by the operating systems
— E.g. StarPU, X-Kaapi, MPC, ...

— Adapt to run / machine configurations

« Growing number of threads

— Hierarchical techniques needed to avoid high
thread management overhead

— However, this evolution may lead to less accurate
scheduling with more workload unbalancing



[R14] Debugging

* Debugging is a sensitive issue difficult to integrate
from the start to project
— Usually a post-mortem technique however ease of

debugging is usually a consequence of the
development methodology

— Integration in the application of the right observation
tools (e.g. tracing capabilities, visualization of code
data structure)

* The use of tools such as Valgrind etc. is
recommended even if the code execution incurs a
large slowdown (x10)

— Detection of memory leaks, ...



[15] Vector and Data Parallelism

Vector capabilities contribute to a large part
of the performance of current CPU
— E.g. 80% on an Intel Xeon Phi

— Data parallelism to use accelerators (i.e. SIMT) is
important

The use of such parallelism cannot be left to
compilers alone

— Code writing rules can greatly help to achieve
automatic vectorization by compilers

— Use of vector intrinsics is not advised



[16] Technological Watch

* Anticipating hardware evolution has a cost

— Especially since current uncertainty generates
multiple tracks

* Avoid the temptation of everything that's new
but do not procrastinate

— Technological watch is key to make the right
decisions

— Unfortunately it is always easier to justify new
user oriented features rather than a technology
evolution



[R17] Gathering Competencies

e |International and national initiatives are
such as "Maison de la Simulation”

* And other competence centers should be
used as much as possible



Conclusions and Perspectives

* Processor evolution toward massive
parallelism questions the codes evolution

» Migrating or a designing a new code for
the decade to come

— An extremely challenging tasks

— Will requires to make multiple algorithmic and
technological choices



