
Processor Evolution:
What to Prepare

Application Codes For?

Orap Mini-Workshop
François Bodin, Henri Calandra, Alain Refloc ́h

Migrating application codes may a lot look like

In an old house, when replacing one wall tile you may
end with getting the wall tore down.

(Thomas Guignon)

2

Mini-Workshop Attendees
•  Alimi Jean-Michel,

Observatoire de Paris
•  Colin de Verdière

Guillaume, CEA DAM
•  Courteille François, Nvidia
•  Dinh Quang, Dassault

Aviation
•  Dolbeau Romain, CAPS

entreprise
•  Fournier Yvan, EDF
•  Grigori Laura, Inria

Rocquencourt
•  Guignon Thomas, IFPEN

•  Kern Michel, Inria (External
contributor)

•  Meurdesoif Yann, CEA
•  Namyst Raymond, Inria

Bordeaux
•  Petiton Serge, Université de

Lille 1, Sciences et
Technologies

•  Ricoux Philippe, Total
•  Thierry Philippe, Intel

3

Context
•  The Power Wall has led to the design of new parallel multi-core and

many-core architectures
–  Achieving scaling is the challenge
–  Application codes (will) have to exhibit massive parallelism at the node

level

•  The evolution of processors is very strongly and deeply impacting
–  Code development
–  Maintenance practice
–  Numerical methods

•  Bill Harrod from the Department of Energy (DOE): ”Uncertainty
threatens future of computing, the world has changed; technology is
changing at a dramatic rate; The IT marketplace is also changing
dramatically, PC sales have flattened, Handhelds dominate growth,
HPC vendor uncertainty; Data volume and variety explosion”

4

Code Main Matters
•  Code validation
•  Surviving at least 4 generations of (very different)

machines
•  Homogeneous programming is at an end
•  Sophisticated runtime techniques required
•  Data structure organization
•  IO sub-systems / data management
•  Application development process

•  Very likely that in some cases achieving scalability
will require going back to basics,
–  i.e. physics, instead of forcefully trying to adapt legacy

codes 5

Warning

It should be noted that the first factor driving
an application development is its

ecosystem and its deployment constraints

6

[R1] Validation

•  Implemented as a continuous process as
recommended
– Validation must ensure reproducibility of the

result without imposing a bit to bit
comparison of the result

– For instance implemented by frameworks
such as Hudson

•  This issue is a primary consideration when
migrating or designing a code

7

[R2] Data Locality
•  We are now very very far away from the 24 Bytes per Flop of the

CRAY1
–  Complex memory hierarchies

•  Internal data structures must be designed in order to facilitate
adaptation to the architecture of the computer
–  E.g. array of structures versus structure of arrays

•  Serializable data structures are preferable since at one point they
may have to migrate to a different storage unit
–  E.g. use of accelerators, saving data structures in NVM, …

•  C++ templates can be one of the implementation technique
–  But this topic is controversial due to the complexity in code maintenance

8

[R3] Scalability

•  Collective operations (e.g. reduction) do
not scale well enough
– When possible they should be avoided

•  Neighbor data exchanges are to be
preferred

•  Choosing the solver is crucial and must be
carefully considered

9

[R4] Programming Languages
•  Programming language choice

–  Must first be performed according to developers background
–  Fortran can still be a good choice
–  Mixing languages (e.g. Fortran and C++) is an option to cover

functional needs
–  Code architectures more important than the language

•  Engineering consideration should be the one guiding the
choices here
–  E.g. portability, persistence, efficiency, libraries, …

•  Combining languages in a given application requires careful
thinking
–  e.g. Libraries, build complexity, compiler adherence, …

10

[R5] Domain Specific Approaches
•  May provide a level of abstraction appealing to scientists

–  Complexity of standard programming is likely to distract
scientists from their scientific discovery goals

•  Embedded Domain Specific Language in a general purpose
host language (e.g. Fortran)
–  Embedded DSL provides extra semantic information and/or code

generation strategy
–  E.g. OpenACC

•  Embedded DSL in some cases are not enough to provide a
high level algorithmic abstraction
–  The data model is the one of the host language and does not

carry the high level semantic required (e.g. an array is not a
matrix)

11

[R6] Development Process
and Infrastructure

•  The cost of a bug increases with its late discovery

•  This is not new, but implementing massive parallel execution make
code development extremely complex
–  Pro-active techniques needed
–  Applications embed bug detection, traces generation, …

•  The development process must integrate software engineering best
practices such as
–  Control using automatic tools (e.g. continuous integration)
–  Configuration management
–  Performance measurement integrated inside the code
–  Unitary test
–  Non-regression testing
–  ...

12

[R7] Fault Tolerance
•  Fault tolerance as envisioned for Exascale systems is

not presently an important consideration

•  But the increase in the cost of IO pushes
–  To consider strategies that minimizes the volume of data

needed for implementing a checkpoint restart technique

•  Applicative specific techniques are the most promising
–  It is believed that they are the only one that may scale in

the long run
–  Does not mean that system/runtime support is not

necessary, on the contrary

13

[R8] I/O
•  Data management and I/O performance will

strongly influence the design of applications
– Requires a global view on the data life cycle

•  Designing the applications requires finding
tradeoffs between
–  In-situ vs. ex-situ processing
– Selecting data format
– Access policy
– Data relocation
– Format changes, etc.

14

[R9] Pre and Post
Processing Integration

•  Pre and post processing may frequently
become the application bottlenecks
–  In-situ analysis to decrease the volume of

data to transfer out of the machine

•  The scientific discovery process must be
particularly well understood to design a
long-term solution

15

[R10] Code Architecture
•  The code architecture

–  Must be mastered and enforced
–  Flaws in the architecture and its dissolution over time have expensive

consequences

•  Goal of the software architecture
–  Modular structure
–  Help re-writing, modifying the fast changing part of the code
–  Help mixing technologies and competencies of the application development teams
–  Provide external APIs to improve usability

–  Internal API to enforced structured development and best practices
–  Allow the development of a machine specific with more lasting generic versions

•  Allow to plug-and-play solvers so they can be chosen according to the
execution platform

–  This consideration is not only related to code architecture, it must be consistent with
numerical schemes

16

[R11] Coding Rules
•  They are a set of rules to guide developers

– Specific to each application and ecosystem
– Their use aims at preserving code efficiency,

maintenance and evolution capabilities
– Specifies preferred code writing style (e.g.

naming conventions, …)

•  For the HPC domain
– Typically the rules would include code structures

that favors vectorization, data locality, efficient
parallel execution, etc.

17

[R12] Libraries
•  The use of external libraries is recommended but must

be chosen with care

•  Use as much as possible native libraries (or open
source ones)
–  Very well optimized

•  Don’t use old algorithms that have been designed for
sequential execution with no memory hierarchy
–  E.g. 1986 Numerical Recipees

•  Choose long lasting libraries or easily replaceable
ones to limit adherence to a given platform

18

[R13] Runtimes
•  Runtimes provide intermediate resource

management services not directly provided
by the operating systems
– E.g. StarPU, X-Kaapi, MPC, …
– Adapt to run / machine configurations

•  Growing number of threads
– Hierarchical techniques needed to avoid high

thread management overhead
– However, this evolution may lead to less accurate

scheduling with more workload unbalancing

19

[R14] Debugging
•  Debugging is a sensitive issue difficult to integrate

from the start to project
–  Usually a post-mortem technique however ease of

debugging is usually a consequence of the
development methodology

–  Integration in the application of the right observation
tools (e.g. tracing capabilities, visualization of code
data structure)

•  The use of tools such as Valgrind etc. is
recommended even if the code execution incurs a
large slowdown (x10)
–  Detection of memory leaks, …

20

[15] Vector and Data Parallelism
•  Vector capabilities contribute to a large part

of the performance of current CPU
– E.g. 80% on an Intel Xeon Phi
– Data parallelism to use accelerators (i.e. SIMT) is

important

•  The use of such parallelism cannot be left to
compilers alone
– Code writing rules can greatly help to achieve

automatic vectorization by compilers
– Use of vector intrinsics is not advised

21

[16] Technological Watch
•  Anticipating hardware evolution has a cost

– Especially since current uncertainty generates
multiple tracks

•  Avoid the temptation of everything that’s new
but do not procrastinate
– Technological watch is key to make the right

decisions
– Unfortunately it is always easier to justify new

user oriented features rather than a technology
evolution

22

[R17] Gathering Competencies

•  International and national initiatives are
such as ”Maison de la Simulation”

•  And other competence centers should be
used as much as possible

23

Conclusions and Perspectives

•  Processor evolution toward massive
parallelism questions the codes evolution

•  Migrating or a designing a new code for
the decade to come
– An extremely challenging tasks
– Will requires to make multiple algorithmic and

technological choices

24

