IMPROVING THE SCALABILITY OF RESERVOIR
SIMULATION ON MULTICORE ARCHITECTURE

Pascal Hénon

ORAP TOTAL

RESERVOIR SIMULATION : PURPOSES

® Estimation of Recovery Factor, Production plateau, EOR
® We have a limited knowledge of underground properties (fault, kr, ..)
® A big part of the work consists in « history matching » : needs many runs

2 ‘ o ToTAL

INTERSECT : PARALLEL PERFORMANCE

® Scalability of a few models : (upper one =13M cells BO: around 50k
cells/processors)

INTERSECT Scalability

up over 16 processor runtimes

|

Number of processors

Source : Schlumberger : SPE ACTE, Oct 31th 2011

3 | @ TOoTAL

SCALABILITY BOTTLENECK IN RESERVOIR SIMULATION

Interior cells

H Property calc
O Linearizer

M Linear solver
B Updater

Ghost cells

® Distributed memory framework (MPI)
® |Load balancing : work per reservoir cell varies during the simulation.

® Linear solver method CPR-AMG is scalable with number of unknowns (weak
scalability) but poorly scalable with number of processors (strong scalability)

Référen
ces, ‘ o TOoTAL
date,

LINEAR SOLVER : CONSTRAINT PRESSURE RESIDUAL

® The Constraint Pressure Residual (CPR) solver : this solver specific to reservoir is a
two stages method (John Wallis and co. SPE 1985) :

A A A A AWW AWS AWP

ww WR t _ SS SP

U P'.4,.P= o Ay Ay Ay
RW RR PS PP APW APS APP

Ay Ayp Ay Ayp

ARW ARW -

[Mo, =M;"(I-AM ")+ M’]

- M, : 1°" stage is global : find approximate pressure (near-elliptic problem : AMG)
- M, : 2" stage is applied on the Az system (eg BILU(0)) : block preconditioner

| Drora

ADAPT LINEAR SOLVER AND PROGRAMMATION TO
SUPERCOMPUTER ARCHITECTURE

1 Node = several CPUs
1 CPU = several cores

\AAA IR A1

Memory

17Gols Network : 4Go/s

& x;

« Manycore » accelerator

° Intel « mainstream » processor evolution : Nehalem 4 cores,
Westmere 6 cores, SandyBridge 8 cores, Haswell 14 cores ...

* Manycore processor Xeon Phi 60 cores (x4 threads)

6 l @ ToTAL

CPR IMPLEMENTATION: THREE LEVELS OF PARALLELISM

P MPI level : number of domains >= number of
cluster node. Static partition : load balancing is
now at the cluster node level (not the cores)

D 1st thread level : number of domains 1 to
Ncores

D 2nd thread level : number of tasks > 10000 :
5 allow to load balance work between cores, use
. P lower number of domains (better convergence)

‘ o TOoTAL

ILU : PARALLELIZATION USING A TASK PROGRAMMATION
MODEL

* Program described as tasks is automatically parallelized : the number of tasks
should be (much) greater than the number of cores

» Several strategies are possible for the task scheduler

« Example ILU(0) with natural ordering : wave front propagation

11 11
—_— —_— —_— @ =
L1 1
—_— —_— _— @ =
11 1]
—_— 0 — 0 — 0 =
1111

LINEAR ALGEBRA PACKAGE

Thése CIFRE
TOTAL/INRIA :

Corentin
Rossignon

Multlcore/manycore programmation mterface

PARALLELISM GRAIN : CASE OF CUBE 10X10X10

Only 1000 tasks but

Cewee Gl dee
. e sEeee

& B YT S SIS
w eeew
- e

iy

PARALLELISM GRAIN : SEVERAL PHASE

> SEBBS
- ii}:"".’?.§ %

St -

LR Y Y YR T

T eeewbi
. Bees

beb BBE T
o W
- e

>
T
Tty
S
TS
T
SN
TR
S

T

ey

o
o

*

EXPERIMENTAL CONDITION

® Test on one rack SGI ICE 8200 (64 nodes of 12 cores : 768 cores)
® Socket X5660 Intel Xeon 6 cores @ 2.8 MHz (Westmere)

® 48 GB of memory

® Hyperthreading/SMT ON BUT we use only 12 threads

® Turbo mode ON

® 2 Infiniband ConnectX DDR 4X (20GB/s)

® First stage of preconditioning : Hypre BoomerAMG (LLNC)

® Stopping Tolerance 0.001 (standard setting in our simulations)

SPEED-UP VS NUMBER OF CORES

SPE10 (1090k cells)
BO (x3 = 3270k)

o N -
=] 25 =2
©
] ——3
2 20

e’

Référen
13 ces, I @ ToTAL
date,

SPEED-UP VS NUMBER OF CORES

BIGCO2_4 (83k cells) Comp. (x9 = 747k)

A\
/AN
A\
\

a
»n 20 \ \
15 / \
10 / \ \
5
0
1 12 24 48 96 192 384 768

thiid

Référen

SPEED-UP VS NUMBER OF CORES

BIGPS5 (240k cells)
BO+polymer (x4 = 960k)

30

25

| N
AN

1 12 24 48 96 192 384 768

Speed-up
o

Référen
15 ces, I @ ToTAL
date,

CONCLUSION

MPI/Thread implementation allows a better « strong scalability »

Fine grain parallelism will be more and more important for upcoming
processors.

MPIl/thread implementation is important in term of programming
efficiency but also in terms of numerical robustness (less domains)

CPR solver involves global communications (dot products, gather on
smaller grids etc..) : to reduce synchronizations due to the linear
solver we are also investigating some methods at the non-linear
level.

16

‘ o TOoTAL

	�Improving the Scalability of Reservoir Simulation on Multicore Architecture� ��	
	Reservoir simulation : purposes
	Intersect : parallel performance
	Scalability bottleneck in reservoir simulation	
	Linear solver : Constraint Pressure Residual
	ADAPT linear solver AND PROGRAMMATION TO Supercomputer Architecture
	CPR implementation: three levels of parallelism
	ILU : parallelization using a task programmation model
	Linear Algebra Package
	Parallelism grain : case of cube 10x10x10
	Parallelism grain : Several phase
	Experimental condition
	Speed-up VS number of cores 	
	Speed-up VS number of cores 	
	Speed-up VS number of cores 	
	Conclusion	

