
Enabling Exascale Programming: A
System-Wide Challenge

Barbara Chapman
University of Houston

http://www.cs.uh.edu/~hpctools

31e Forum ORAP
Paris, 3/25/2013

Acknowledgements: NSF CNS-0833201, CCF-0917285;
DOE DE-FC02-06ER25759, TOTAL SA

Agenda

n  The Challenge
n  Programming Models: What’s Out There?
n  Compiler Efforts: Increasing the Benefits
n  Runtime Support and System Interactions

Exascale: Anticipated Architectural Changes

3

¨  Massive (ca. 4X) increase in concurrency
  Mostly within compute node

¨  Node architecture is changing considerably
 Core count, heterogeneity, memory size & BW, power,

resilience
¨  Balance between compute power and memory

changes significantly
  50x FLOPs of 20PF HW but just a small increase in memory
  Memory access time lags further behind

• Complex Digital ASIC Design • Activity 1 Case Study: Scalar vs. Vector Processors Activity 2

Course Motivation: Research Perspective

ECE 5950 Course Overview 18 / 35

Multicore Programmer’s Wish List

n  Rewriting applications from scratch
requires considerable time and
effort
q  Need easy way to parallelize

existing codes
q  Incremental migration path

essential for major applications
n  …with familiar and/or commodity

programming models

q  Not all programming models are
created equal

q  None are perfect, but industry
adoption is critical

Portability,
Portablity,
Portability!

HPC Programming Model Ingredients

5

n  Performance
q  Parallelism; load balance;

minimization of waits
n  Portability

q  Across diverse, perhaps
heterogeneous systems

n  Power-saving
q  Mainly via locality

Multiple layers of
potentially different
kinds of parallelism

in hardware

And let’s not forget Productivity

Agenda

n  The Challenge
n  Programming Models: What’s Out There?
n  Compiler Efforts: Increasing the Benefits
n  Runtime Support and System Interactions

The PGAS Approach

Characteristics:
n  Global view of data
n  Data affinity part of

memory model
n  Single-sided remote

access

memory memory memory

cpu cpu cpu

process process process

Advantages:
n  more representative of modern

NUMA architectures
n  Works well for distributed

interconnects with RMA
support

n  Productivity and performance

Language Extensions:
 UPC, Coarray Fortran (CAF), Titanium
Libraries:
 OpenSHMEM, Global Arrays, GASPI
“APGAS”:
 X10, Chapel, Fortress, CAF 2.0

Example: Coarray Fortran (CAF)
n  SPMD execution model; each executing unit is called an image
n  Remotely accessible data declared as coarrays
n  Adds support for various synchronization mechanisms to the language

(e.g. barriers, locks)
n  Support for teams, collectives, atomics, and event-based synchronization

around the corner
n  Part of the Fortran standard (Fortran 2008)

Matrix Multiply example:
n  Coarrays allocated symmetrically
n  iIage index info obtained through intrinsic

function calls
n  sync all for global barrier
n  Remote data accesses are achieved

through co-indexed coarray references

9

Defacto Mature Standard - OpenMP

n  High-level API for shared memory programming
q  Widespread vendor support and a large user base
q  User makes strategic decisions; compiler figures out details

n  OpenMP code is portable
q  Across compilers, runtimes
q  Mainstream compilers for Fortran, C and C++ support OpenMP

#pragma omp parallel
#pragma omp for schedule(dynamic)

 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 } /* implicit barrier here */

Keeping OpenMP Relevant

4 2-way AMD Opteron
6174 Magny-Cours
processor (24 physical
cores)

4 Nvidia Tesla M2050
GPUs (440 compute
cores), 3GB GDDR5

OpenMP ARB 2013

11

Upcoming OpenMP 4.0

n  Release Candidate 1 @ SC12
n  Release Candidate 2 ~March 2013
n  Candidate topics:

q  Accelerator
q  Affinity and locality
q  Task extensions: task group and dependent tasks
q  Error model
q  SIMD extensions
q  Tools interface
q  User-defined reductions

n  OpenMP places and thread affinity policies
q  OMP_PLACES to describe places in system
q  affinity(spread|compact|true|false)	

n  SPREAD: spread threads evenly among the places
spread	 8	

n  COMPACT: collocate OpenMP thread with master
thread

compact	 4	

OpenMP 4.0 Affinity Proposal

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

OpenMP SIMDization

n  The simd construct can be applied to a loop
n  Indicates that it can be transformed into a SIMD loop
n  Multiple iterations of the loop can be executed

concurrently using SIMD instructions
n  Can also be combined with parallel loop (for or do)

#pragma omp simd [clause[[,] clause] ...] new-line
for-loops
where clause is one of the following:
safelen(length) linear(list[:linear-step]) aligned(list[:alignment])
private(list) lastprivate(list) reduction(operator:list) collapse(n)

14

OpenMP Performance Tools Interface

n  int__omp_collector_api(void *msg)
n  Single routine used by

tools to communicate with
runtime.

§  One call, many requests.
§  Supports events/states

needed for statistical
profiling and tracing tools

§  Current work extends
original design from Sun

OpenMP Program
(object code)

Collector API

Performance Tool

executable (./a.out)

re
qu

es
t

ev
en

ts

OpenMP 4.0 Accelerator Model

n  Execution Model: Offload data
and code to accelerator
q  target construct creates tasks to

be executed by devices
n  Memory Model:

q  shared data copies synchronized
implicitly at end of target
construct regions or explicitly
using a target flush construct.

n  Intended to work with wide
variety of accelerators

n  User maps data to and from the
device memory

n  Enables hierarchical parallelism

16

Main
Memory

Application
data

General
Purpose

Processor
Cores

target

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks offloaded
to accelerator

OpenACC

n  High-level directive-based
programming model for
heterogeneous architectures
q  Collection of compiler directives

to specify loops and regions of
code in standard C, C++ and
Fortran

q  Enables scientific Fortran and C
programmers to take advantage
of heterogeneous CPU/GPU
computing systems.

q  Takes multiple levels of parallelism
for GPUs into account

htp://www.openacc-standard.org/

 OpenACC 2.0

18

n  Support for procedure calls
n  Compiler needs to know what procedures are needed on the

device – This is done by the ‘routine’ directive
n  Routine with a ‘bind’ clause tells the compiler to call a routine

with a different name when calling on the accelerator
n  Nested Parallelism
n  Device Specific Tuning

q  Tuning for multiple devices in a single program
n  Data Management Features

q  To manage data lifetimes on the device
n  Async Clause

q  To resolve dependencies between multiple async
handles without requiring the host thread to wait

n  Loop directive additions
n  New API routines

Agenda

n  The Challenge
n  Programming Models: What’s Out There?
n  Compiler Efforts: Increasing the Benefits
n  Runtime Support and System Interactions

Machine Aware Compilation
n  Restructure work units

q  Merging or splitting work units for better granularity
q  Guided by parameterized cost model

n  Application structural representation
q  Work units and dependences
q  Data distribution among places

n  Compile time approximation
q  Data mapping onto places
q  Data binding with work unit
q  Decision honored by runtime

n  But may be adapted and refined.

12

3.4 Related Work

Broadly speaking, the REX programing model is designed to address concerns and directions
expressed at the DoE 2011 Workshop on Exascale Programming Challenges [17]. The REX
programming model leverage multiple previous language e�orts, including asynchronous task
parallel models from Cilk [22], asynchronous PGAS languages such as X10 [26], [79] and
Chapel [4], and the data parallel model in OpenMP [72] and OpenACC [71] standard. It also
borrow concepts from data-flow, functional and single-assignment programming models [6], [20],
[21], [27], [68]. One of the distinguishing features of REX is its combination of these concepts with
an integration with MPI for inter-node communication. Also, REX is geared towards creating
higher-level constructs similar to the multiresolution programming model Chapel [4], but through
a creation of domain-specific languages suitable for compilation on heterogeneous platforms.

4 REX Compiler Research

Fig. 6. REX Machine-Aware Compilation Environment

The extent to which a compiler is able to optimize code is highly dependent on the information
available to it about the program and its data usage, and how well it is able to speculate on the
runtime behavior. The REX compiler will make extensive use of the explicit data and parallelism
information contained in a REX program in order to perform aggressive optimizations that are
tailored to the target node architectures. The REX compiler research includes the following:

• We will design an Application Structural Representation (ASR) for REX programs. The
high-level representation of an application’s parallelism and data access patterns provided
by the ASR will be used to assist parallelism-aware compilation, pass information to the
runtime, and support interaction with both expert programmers and performance tools.

• We will perform research on machine-aware compilation and memory optimization on
di�erent architectures, including current and future architectures that are not conventional
but may influence parts of the exascale hardware roadmap.

• The REX compiler will support generation of multiple code versions for data parallel regions,
e.g. generating both CPU and GPGPU versions from a single source.

Compiler Cost Models Guide Translation

n  Conventional cost model
q  Mostly evaluates cache effects of uniprocessors

n  Modeling sharing and contention effects
q  Needed on multi- and many-core architectures
q  Consideration of the memory hierarchy structure
q  False sharing, shared cache contention, and memory bandwidth

contention and latency
n  Node model

q  Multiple kinds of cores, interconnect, structure of memory
hierarchies

n  Supports compile-time and runtime optimization
q  Data placement and affinity between tasks and data
q  Mapping task graphs to the hardware architectures
q  Guided energy-aware scheduling

21

What to Model?
Cost models

Processor model
Cache model

Parallel model

Loop overhead

Parallel overhead

Machine cost

Cache cost

Reduction cost

Computational
resource cost

Dependency
latency cost
Register spill

 cost

Cache cost
Operation cost

Issue cost
Mem_ref cost

TLB cost

4853,08105
2691,89195 3551,39345

6033,2904

2402,6061 2255,9813

7083,30225
4546,6893

3064,6816 3567,4856 2697,7405
5231,9194

2167,1573

8119,38975

4286,8672
6046,2975

2574,97045 2108,68385

8906,8519

3676,1309 4898,5849
2451,7159

6758,78625
4134,11485

5505,723
2758,22575 3676,2987 4590,789

0
5000

10000

1+2 2+2 3+1 1+4 3+2 4+2 5+1 3+4 2+5 6+1 4+4 5+3 2+6 5+4 6+3 4+6 5+6 B
W

 (M
B

/s
)

Thread Configuration (# of remote + # of local threads)

HT3 BW vs Threads on 2 Istanbuls

1+2

2+1

2+2

1+3

CAF Support in OpenUH

CAF language support
in front-end

CAF optimization
and translation to
runtime

CAF back-end
optimization

CAF Runtime
based on
GASNet or
ARMCI

CAF Support in OpenUH

CAF language support
in front-end

CAF optimization
and translation to
runtime

CAF back-end
optimization

CAF Runtime
based on
GASNet or
ARMCI

Reverse-time Migration Code in CAF

Forward Shot
Comparison

Total Domain
Size: 1024 x 768
x 512 (3.0 GB,
per shot)
Comparison:
OpenUH CAF,
Intel MPI

 CAF port and results by Alan
Richardson, Summer 2012 Internship,
Total.

n  A source wave is emitted per shot
n  Reflected waves captured by array of

sensors
n  RTM (in time domain) uses finite

difference method to numerically solve
wave equation and reconstruct
subsurface image (in parallel, with
domain decomposition)

PGAS Compiler Performance Optimization

n  Reduce Messaging Overhead of Remote Accesses
q  aggregate fine-grained accesses; optimal message size is system

dependent
q  identify communication patterns and convert 1-sided communication

to optimized collective operations
n  Reduce Round-trip Cost of Remote Accesses

q  generate split-phase access and use code motion to increase
overlap of computation with in-progress remote accesses

q  transmit “codelets” to initiate a computation at the target rather than
bring in data

n  Reduce Synchronization Overhead
q  compiler analysis to identify over-synchronization
q  transformations to use split-phase barriers or point-to-point

synchronization

Standard OpenMP Implementation

n  Directives implemented via
code modification and
insertion of runtime library
calls
q  Basic step is outlining of code in

parallel region
q  Or generation of microtasks

n  Runtime library responsible
for managing threads
q  Scheduling loops
q  Scheduling tasks
q  Implementing synchronization
q  Collector API provides interface

to give external tools state
information

n  Implementation effort is
reasonable

OpenMP Code Translation

int main(void)
{
int a,b,c;
#pragma omp parallel \
private(c)
do_sth(a,b,c);
return 0;
}

_INT32 main()
{
int a,b,c;
/* microtask */
void __ompregion_main1()
{
_INT32 __mplocal_c;
/*shared variables are kept intact,
substitute accesses to private
variable*/
do_sth(a, b, __mplocal_c);
}
…
/*OpenMP runtime calls */
__ompc_fork(&__ompregion_main1
);
…
}

Each compiler has custom run-time support. Quality of the
runtime system has major impact on performance.

Alternative OpenMP Translation for
Asynchronous Execution

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

n  Compiler translates “standard”
OpenMP into collection of work
units (tasks) and task graph

n  Analyzes data usage per work unit
n  Trade-off between load balance

and co-mapping of work units that
use same data

n  What is “right” size of work unit?
q  Might need to be adjusted at run time

IN|OUT|INOUT for Dependent Tasks

29

41. LU Decomposition with task extensions

1 #pragma omp p a r a l l e l
2 {
3 #pragma omp master
4 {
5 f o r (i =0; i<mat r i x s i ze ; i ++) {
6
7 /∗∗∗∗ Processing Diagonal b lock ∗∗∗∗ /
8 ProcessDiagonalBlock (.) ;
9
10 f o r (i =1; i<M; i ++){
11
12 #pragma omp task out(2*i) /∗∗ Processing block on column ∗∗ /
13 ProcessBlockOnColumn (.) ;
14
15 #pragma omp task out(2*i+1) /∗∗ Processing block on row ∗∗ /
16 ProcessBlockOnRow (.) ;
17 }
18
19 /*** Elimination of Global Synchronization point ********/
20
21 /∗∗∗∗ Processing remaining inner b lock ∗∗∗∗ /
22 f o r (i =1; i<M; i ++)
23 f o r (j =1; j<M; j ++){
24 #pragma omp task in(2*i) in(2*j+1)
25 ProcessInnerBlock (.) ;
26 }
27 #pragma omp taskwa i t
28 }
29 }
30 }

Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, V. Sarkar, and G. Gao. Synchronization for dynamic task parallelism on manycore
architectures. 2010

#pragma omp task out [t1, t2, …]
#pragma omp task in [t1, t2, …]

Runtime
•  Avoid the use of global locks
•  Allows workstealing
•  Decentralized dependence setup

and resolution 49. Speedup: LU Matrix 4096 - O3 optimization

Performance comparison with respect to similar dataflow models

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1 2 4 8 16 24 32 48

Sp
ee

du
p

Vs
. 1

 th
re

ad

Number of threads

OpenUH-with ext
BSC

QUARK

Performance in seconds for matrix size 4096 X 4096, with 16 blocks per dimension
Size:4096, block:16 OpenUH ext OmpSs dep Quark

1 58.90 69.80 59.57
2 31.51 37.06 34.01
4 16.10 20.31 18.67
8 8.90 11.97 11.20
16 5.30 8.05 8.17
24 4.00 6.99 7.64
32 3.41 6.67 7.44
48 2.46 6.84 7.69

OpenUH with task extensions outperforms OmpSs and QUARK by 2.3X and 3X respectively
OmpSs and QUARK scale only upto 32 threads

OpenUH with extensions - performance benefit of 32%, OmpSs with extensions - performance degradation of 20%

48. Speedup: LU Matrix 4096 - O3 optimization

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1 2 4 8 16 24 32 48

Sp
ee

du
p

Vs
 1

 th
re

ad

Number of threads

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN-Oracle
PGI

OmpSs

Performance in seconds for matrix size 4096 X 4096 with 16 blocks per dimension
Threads GNU Intel OpenUH noext OpenUH ext Sun PGI OmpSs

1 58.94 52.49 58.84 58.9 50.22 71.56 93.24
2 29.57 26.24 30.28 31.51 25.06 47.93 39.2
4 19.77 17.05 19.14 16.1 18.22 27.2 21.5
8 11.69 10.41 11.3 8.9 11.73 14.94 12.72
16 7.13 6.28 6.93 5.3 7.76 8.26 8.61
24 5.41 4.77 5.42 4 6.38 6.07 8.61
32 4.6 3.99 4.52 3.41 5.79 4.9 7.85
48 4.05 3.34 3.62 2.46 5.11 3.8 5.45
OpenUH with task extensions outperforms OpenUH without task extensions by a margin 1.47X

OpenUH compiler outperforms GNU, Intel, Oracle, PGI and OmpSs by 1.64X, 1.35X, 2X, 1.5X and 2.21X respectively

Adapting Translation to New Kinds of Memory

P
ar

al
le

l r
eg

io
n

1
Start

End

Initialization

slave thread #1

snoop for nequest

Execute
“micro_task()”

start
 msg

completion
msgs

Initialization
micro_task context

send request

Execute micro_task()

barrier

P
ar

al
le

l r
eg

io
n

2

Initialization
micro_task context

send request

Execute micro_task()

barrier

barrier

slave thread #1

snoop for nequest

Execute
“micro_task()”

barrier

slave thread #1

snoop for nequest

Execute
“micro_task()”

barrier

n  Scratchpad memory, lack of coherent memory
n  Slow shared memory, …

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance
Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009.

Agenda

n  The Challenge
n  Programming Models: What’s Out There?
n  Compiler Efforts: Increasing the Benefits
n  Runtime Support and System-Wide

Interactions

Runtime Locality-Aware Scheduling

n  Locality-aware scheduling and data affinity
q  A worker executes tasks at ancestor places from

bottom-up
q  Tasks from a place can be executed by all of the

workers of the place subtree
n  Lightweight synchronization
n  Hybridization and heterogeneity

q  Helper thread(s)
q  Handling remote and async operations and call backs

n  Runtime adaptation
q  Task-level auto-tuning

PL1 PL2

PL0

PL3

w0

PL4

w1

PL5

w2

PL6

w3

Runtime Must Adapt
OpenMP
Runtime
Library

Collector Tool

OpenMP App

Event
callback

Register
event

n  Runtime support to continuously
q  Adapt workload and data to environment
q  Respond to changes caused by application characteristics, power,

(impending) faults, system noise
q  Provide feedback on application behavior

n  Collector Interface, implemented in compiler’s runtime,
enables monitoring of OpenMP program
q  Enables tools to interact with OpenMP runtime library
q  Event based communication (OMP_EVENT_FORK, OMP_EVENT_JOIN,

n  Do useful things based on notification

Small “Mistakes”, Big Consequences

n  GenIDLEST
q  Scientific simulation code
q  Solves incompressible Navier

Stokes and energy equations
q  MPI and OpenMP versions

n  Platform
q  SGI Altix 3700 (NUMA)
q  512 Itanium 2 Processors

n  OpenMP code slower than MPI

OpenMP version

MPI version

In the OpenMP version , a single procedure is responsible for 20% of
the total time and is 9 times slower than the MPI version . Its loops are up
to 27 times slower in OpenMP than MPI.

A Solution: Privatization

• Lower and upper bounds of arrays used
privately by threads are shared, stored in same
memory page and cache line

• Here, they have been privatized.

• The privatization improved the performance of
the whole program by 30% and led to a speedup
of 10 for the procedure.

•  Now procedure only takes 5% of total time

OpenMP Optimized Version

False-sharing at Work

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

This is False Sharing at work !

no
 s

ha
rin

g

P=1 P=2 P=4 P=8

False sharing increases as
we increase the number of

threads

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance comparison

Number of threads

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

For a higher value of M, the
program scales better

M = 7,500

M = 75,000

Modeling False Sharing at Compile-Time

37

_ _ _mod _mod
*

_ _mod

fs measured nfs measured fs eled nfs eled

fs measured fs eled

T T T T
T T

− −
≈

0

10

20

30

40

50

2 4 8 16 24 32 40 48

Fa
ls

e
Sh

ar
in

g
Ef

fe
ct

 %

Number of Threads

FFT

Actual

Modeled

0

5

10

15

20

25

30

2 4 8 16 24 32 40 48

Fa
ls

e
Sh

ar
in

g
Ef

fe
ct

 %

Number of Threads

Heat Diffusion

Actual

Modeled

Compile-time assessment
n  Analyze array references to generate

a cache line ownership list
n  Apply a stack distance analysis
n  Compute the FS overhead cost

M. Tolubaeva, Y. Yan and B. Chapman. Compile-Time Detection of False Sharing via Loop
Cost Modeling. HIPS'12 Workshop in conjunction with IPDPS'12

False Sharing: Monitoring Results

n  Cache line invalidation measurements (in Phoenix suite)

Program name 1-thread 2-threads 4-threads 8-threads
histogram 13 7,820,000 16,532,800 5,959,190
kmeans 383 28,590 47,541 54,345
linear_regression 9 417,225,000 254,442,000 154,970,000
matrix_multiply 31,139 31,152 84,227 101,094
pca 44,517 46,757 80,373 122,288
reverse_index 4,284 89,466 217,884 590,013
string_match 82 82,503,000 73,178,800 221,882,000
word_count 4,877 6,531,793 18,071,086 68,801,742

False Sharing: Data Analysis Results

n  Determining the variables that cause misses

Program
Name

Global/static data Dynamic data

histogram - main_221

linear_regression - main_155

reverse_index use_len main_519

string_match key2_final string_match_map_2
66

word_count length, use_len,
words

-

Runtime False Sharing Detection

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

Original Version Optimized Version

B.	 Wicaksono,	 M.	 Tolubaeva	 and	 B.	 Chapman.	 “Detecting	 false	 sharing	 in	 OpenMP	
applications	 using	 the	 DARWIN	 framework”,	 LCPC	 2011	

DARWIN: Feedback-Based Adaptation

n  Dynamic Adaptive Runtime Infrastructure
q  Online and offline (compiler or tool) scenarios
q  Monitoring

n  Capture performance data for analysis via monitoring
n  Relate data to source code and data structures
n  Apply optimization and / or visualize
n  Demonstrated ability to optimize page placement on NUMA

platform; results independent of numthreads, data size

OpenMP
Runtime

Persistent
Storage data analysis

DARWIN
profiling data-centric

information

Besar Wicaksono, Ramachandra C Nanjegowda, and Barbara Chapman. A
Dynamic Optimization Framework for OpenMP. IWOMP 2011	

An Information-Rich Environment

��������

	
�������
���

�
�����
������

�����������
����
������

�
�
�
��
��
��
�
�

�
��
��
�
�
�
��
�

�
�
�
�

�
��
��
��
��
�

�
��
�
��
�

!
��

��
�
�

�
��
��
��
�

�
�
��
��

��������
	
����������

��������

�
�����
������

�����������
����
������

	
�������
���

	
��������

�����
�

•  Coordinated
management of system
resources

•  Application metadata
used by compiler, tools
and runtime

•  Use with architectural
information, system
state, smart monitoring
for adaptation on the fly

•  Compiler modeling for
dynamic optimization as
well as feedback to
user, tools

•  And much more…

•  Compiler, tools collaborate to support application
development and tuning

•  All components cooperate to increase execution
efficiency

Additional Slides

n  BACKUP SLIDES FROM HERE

Results – Smith Waterman (-O0 optimization) Sequence Size: 4096

Performance (in secs) with task chunk size 320, w.r.t. commercial compilers :

Performance (in secs) with task chunk size 320 w.r.t. related dataflow models:

 Threads OpenUH_ext OmpSs_ext Quark

2 1.045 52.251 2.639
4 0.511 50.640 2.278
8 0.480 48.645 2.081

16 0.669 46.256 2.395
	

Benchmark Suite Results using K20

45

OpenACC%Certification%Suite%
%

We are also developing a certification suite to test emerging OpenACC implementations for completeness and
semantic correctness to ensure that these implementations achieve a high degree of conformity with the
standard. The certification suite consists of applications from several well-known benchmark suites such as
NAS, PARBOIL, Rodinia and others. The applications were chosen based on several domains and include a
variety of computational methods.

The certification suite has been evaluated on an NVIDIA Kepler GPU and an Intel Xeon CPU with 8 cores.
Table 2 shows a comparison of the speedup of OpenACC for a variety of applications to sequential version,
OpenMP Version 3.1 (8 cores) and CUDA (4.2 &5.0).

Table 2: Speedup of OpenACC for various applications.

Applications Domains OpenACC Directive
Combinations

Lines of Code
Added vs Serial Speedup Over

OpenMP OpenACC Seq OpenMP CUDA

Needleman-
Wunsch Bioinformatics

data copy, copyin
kernels present
loop gang, vector, private

6 5 2.98 1.28 0.24

Stencil Cellular
Automation

data copyin, copy, deviceptr
kernels present
loop collapse, independent

1 3 40.55 15.87 0.92

Computational
Fluid Dyanmics

(CFD)
Fluid Mechanics

data copyin, copy, deviceptr
data present, deviceptr
kernels deviceptr
kernels loop, gang, vector, private
loop gang, vector
acc_malloc(), acc_free()

8 46 35.86 4.59 0.38

2D Heat (grid
size 4096*4096) Heat Conduction

data copyin, copy, deviceptr
kernels present
loop collapse, independent

1 3 99.52 28.63 0.90

Clever (10Ovals) Data Mining

data copyin
kernels present, create, copyin,
copy
loop independent

10 3 4.25 1.22 0.60

FeldKemp
(FDK)

Image
Processing

kernels copyin, copyout
loop, collapse, independent 1 2 48.30 6.51 0.75

We observed that the certification suite exhibits a set of behaviors. For example, OpenACC speedup ranges
from 2.98 to 99.52 over the sequential version and from 1.22 to 28.63 over 8-core OpenMP version. The
applications have been chosen based on their computations and communication patterns.

We also observed that OpenACC is yet to achieve good speedup compared with that of the CUDA version of
the applications. It may be because the OpenACC compilers do not generate an optimized GPU code. Deeper
analysis of the OpenACC code may lead to further enhancements to the code and better speedup. However
with respect to the sequential and OpenMP version of the applications, we notice improved speedup in each
case. We are aware that OpenMP, a directive-based model, is good at retaining most of the code structure, and
still be able to express parallelism. The LOC (Lines of Code) column shows that OpenACC also offers similar
advantages. For the application CFD, we notice that LOC was significantly different to that of OpenMP, this is
primarily because we have used acc_malloc(), acc_free() and runtime routines, but it is evident that OpenACC
offers better speedup.

Consequently, we think current OpenACC implementations allow applications to be ported to GPUs in a
successful manner in terms of programmability and portability.

OpenMP Locality Research
Locations := Affinity Regions, Based on Locales, Places

n  Means to manage data layout
and enhance locality.

n  Adapts Chapel/X10 ideas
q  Represent execution environment

by collection of “locations”
q  Map data, threads to a location;

distribute data across locations
q  Align computations with data’s

location, or map them explicitly

n  Significant performance boost
on mid-size SMP systems.

Lei Huang, Haoqiang Jin, Barbara Chapman, Liqi Yi. Enabling Locality-Aware
Computations in OpenMP. Scientific Computing, Vol 18, Numbers 3-4, 169-181,
IOS Press Amsterdam, 2010

n  Leverages the DSP shared
memory architecture for
multicore.

n  Makes use of dedicated
DSP hardware for fast
synchronization.

n  Runs efficiently on TI’s
SYS/BIOS™ realtime
operating system (RTOS).

TI’s OpenMP solution stack. The C66x compiler translates OpenMP into multi-
threaded code with calls to the runtime API. The runtime library is implemented
on top of distributed copies of SYS/BIOS and IPC.

TI’s OpenMP Solution Stack

