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Exascale: Anticipated Architectural Changes 
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¨  Massive (ca. 4X) increase in concurrency 
  Mostly within compute node 

¨  Node architecture is changing considerably   
 Core count, heterogeneity, memory size & BW, power, 

resilience  
¨  Balance between compute power and memory 

changes significantly 
  50x FLOPs of 20PF HW but just a small increase in memory 
  Memory access time lags further behind 

• Complex Digital ASIC Design • Activity 1 Case Study: Scalar vs. Vector Processors Activity 2

Course Motivation: Research Perspective
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Multicore Programmer’s Wish List 

n  Rewriting applications from scratch 
requires considerable time and 
effort  
q  Need easy way to parallelize 

existing codes 
q  Incremental migration path 

essential for major applications  
n  …with familiar and/or commodity 

programming models 

q  Not all programming models are 
created equal 

q  None are perfect, but industry 
adoption is critical 

Portability, 
Portablity, 
Portability! 



HPC Programming Model Ingredients 
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n  Performance 
q  Parallelism; load balance; 

minimization of waits 
n  Portability 

q  Across diverse, perhaps 
heterogeneous systems 

n  Power-saving 
q  Mainly via locality 

 

Multiple layers of 
potentially different 
kinds of parallelism 

in hardware 

And let’s not forget Productivity 
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The PGAS Approach 

Characteristics: 
n  Global view of data 
n  Data affinity part of 

memory model 
n  Single-sided remote 

access 

 

memory memory memory 

cpu cpu cpu 

process process process 

Advantages: 
n  more representative of modern 

NUMA architectures 
n  Works well for distributed 

interconnects with RMA 
support 

n  Productivity and performance 

Language Extensions:  
     UPC, Coarray Fortran (CAF), Titanium 
Libraries: 
     OpenSHMEM, Global Arrays, GASPI 
“APGAS”: 
     X10, Chapel, Fortress, CAF 2.0 



Example: Coarray Fortran (CAF) 
n  SPMD execution model; each executing unit is called an image 
n  Remotely accessible data declared as coarrays 
n  Adds support for various synchronization mechanisms to the language 

(e.g. barriers, locks) 
n  Support for teams, collectives, atomics, and event-based synchronization 

around the corner 
n  Part of the Fortran standard (Fortran 2008) 

 
Matrix Multiply example: 
n  Coarrays allocated symmetrically 
n  iIage index info obtained through intrinsic 

function calls 
n  sync all for global barrier 
n  Remote data accesses are achieved 

through co-indexed coarray references 
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Defacto Mature Standard - OpenMP 

n  High-level API for shared memory programming  
q  Widespread vendor support and a large user base 
q  User makes strategic decisions; compiler figures out details 

n  OpenMP code is portable 
q  Across compilers, runtimes 
q  Mainstream compilers for Fortran, C and C++ support OpenMP 

#pragma omp parallel 
#pragma omp for schedule(dynamic) 

 for (I=0;I<N;I++){ 
  NEAT_STUFF(I); 
 } /* implicit barrier here */ 



Keeping OpenMP Relevant 
 

4 2-way AMD Opteron 
6174 Magny-Cours 
processor (24 physical 
cores) 
 
4 Nvidia Tesla M2050 
GPUs (440 compute 
cores), 3GB GDDR5 
 



OpenMP ARB 2013 
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Upcoming OpenMP 4.0 

n  Release Candidate 1 @ SC12 
n  Release Candidate 2 ~March 2013 
n  Candidate topics: 

q  Accelerator 
q  Affinity and locality 
q  Task extensions: task group and dependent tasks 
q  Error model 
q  SIMD extensions 
q  Tools interface 
q  User-defined reductions 



n  OpenMP places and thread affinity policies 
q  OMP_PLACES to describe places in system 
q  affinity(spread|compact|true|false)	  

n  SPREAD: spread threads evenly among the places 
spread	  8	  
 

n  COMPACT: collocate OpenMP thread with master 
thread 

compact	  4	  

OpenMP 4.0 Affinity Proposal 
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OpenMP SIMDization 

 
 
n  The simd construct can be applied to a loop  
n  Indicates that it can be transformed into a SIMD loop 
n   Multiple iterations of the loop can be executed 

concurrently using SIMD instructions 
n  Can also be combined with parallel loop (for or do) 

#pragma omp simd [clause[[,] clause] ...] new-line 
for-loops 
where clause is one of the following: 
safelen( length ) linear( list[:linear-step] ) aligned( list[:alignment] ) 
private( list ) lastprivate( list ) reduction( operator:list ) collapse( n ) 
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OpenMP Performance Tools Interface 

n  int__omp_collector_api(void *msg) 
n  Single routine used by 

tools to communicate with 
runtime. 

§  One call, many requests. 
§  Supports events/states 

needed for statistical 
profiling and tracing tools 

§  Current work extends 
original design from Sun 

 

OpenMP Program 
(object code) 

Collector API 

Performance Tool 

executable (./a.out) 
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t 
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OpenMP 4.0 Accelerator Model   

n  Execution Model: Offload data 
and code to accelerator 
q  target construct creates tasks to 

be executed by devices 
n  Memory Model:  

q  shared data copies synchronized 
implicitly at end of target 
construct regions or explicitly 
using a target flush construct. 

n  Intended to work with wide 
variety of accelerators 

n  User maps data to and from the 
device memory 

n  Enables hierarchical parallelism  
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Main 
Memory 

Application 
data 

General 
Purpose 

Processor 
Cores 

target 

Application 
data 

acc. cores 

Copy in 
remote 
data 

Copy out 
remote data 

Tasks offloaded 
to accelerator 



OpenACC 

n  High-level directive-based 
programming model for 
heterogeneous architectures 
q  Collection of compiler directives 

to specify loops and regions of 
code in standard C, C++ and 
Fortran 

q  Enables scientific Fortran and C 
programmers to take advantage 
of heterogeneous CPU/GPU 
computing systems.  

q  Takes multiple levels of parallelism 
for GPUs into account 

 
htp://www.openacc-standard.org/  
 



     OpenACC 2.0 
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n  Support for procedure calls 
n  Compiler needs to know what procedures are needed on the 

device – This is done by the ‘routine’ directive 
n  Routine with a ‘bind’ clause tells the compiler to call a routine 

with a different name when calling on the accelerator 
n  Nested Parallelism 
n  Device Specific Tuning 

q  Tuning for multiple devices in a single program 
n  Data Management Features  

q  To manage data lifetimes on the device  
n  Async Clause 

q  To resolve dependencies between multiple async 
handles without requiring the host thread to wait 

n  Loop directive additions 
n  New API routines 
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Machine Aware Compilation 
n  Restructure work units 

q  Merging or splitting work units for better granularity 
q  Guided by parameterized cost model 

n  Application structural representation 
q  Work units and dependences 
q  Data distribution among places  

n  Compile time approximation 
q  Data mapping onto places 
q  Data binding with work unit 
q  Decision honored by runtime  

n  But may be adapted and refined. 
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3.4 Related Work

Broadly speaking, the REX programing model is designed to address concerns and directions
expressed at the DoE 2011 Workshop on Exascale Programming Challenges [17]. The REX
programming model leverage multiple previous language e�orts, including asynchronous task
parallel models from Cilk [22], asynchronous PGAS languages such as X10 [26], [79] and
Chapel [4], and the data parallel model in OpenMP [72] and OpenACC [71] standard. It also
borrow concepts from data-flow, functional and single-assignment programming models [6], [20],
[21], [27], [68]. One of the distinguishing features of REX is its combination of these concepts with
an integration with MPI for inter-node communication. Also, REX is geared towards creating
higher-level constructs similar to the multiresolution programming model Chapel [4], but through
a creation of domain-specific languages suitable for compilation on heterogeneous platforms.

4 REX Compiler Research




























      












Fig. 6. REX Machine-Aware Compilation Environment

The extent to which a compiler is able to optimize code is highly dependent on the information
available to it about the program and its data usage, and how well it is able to speculate on the
runtime behavior. The REX compiler will make extensive use of the explicit data and parallelism
information contained in a REX program in order to perform aggressive optimizations that are
tailored to the target node architectures. The REX compiler research includes the following:

• We will design an Application Structural Representation (ASR) for REX programs. The
high-level representation of an application’s parallelism and data access patterns provided
by the ASR will be used to assist parallelism-aware compilation, pass information to the
runtime, and support interaction with both expert programmers and performance tools.

• We will perform research on machine-aware compilation and memory optimization on
di�erent architectures, including current and future architectures that are not conventional
but may influence parts of the exascale hardware roadmap.

• The REX compiler will support generation of multiple code versions for data parallel regions,
e.g. generating both CPU and GPGPU versions from a single source.



Compiler Cost Models Guide Translation 

n  Conventional cost model 
q  Mostly evaluates cache effects of uniprocessors 

n  Modeling sharing and contention effects  
q  Needed on multi- and many-core architectures 
q  Consideration of the memory hierarchy structure 
q  False sharing, shared cache contention, and memory bandwidth 

contention and latency 
n  Node model 

q  Multiple kinds of cores, interconnect, structure of memory 
hierarchies 

n  Supports compile-time and runtime optimization 
q  Data placement and affinity between tasks and data 
q  Mapping task graphs to the hardware architectures 
q  Guided energy-aware scheduling 

21 



What to Model?  
Cost models 

Processor model 
Cache model 

Parallel model 

Loop overhead 

Parallel overhead 

Machine cost 

Cache cost 

Reduction cost 

Computational  
resource cost 

Dependency  
latency cost 
Register spill 

 cost 

Cache cost 
Operation cost 

Issue cost 
Mem_ref cost 

TLB cost 
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CAF Support in OpenUH 

CAF language support  
in front-end 

CAF optimization 
and translation to 
runtime 

CAF back-end 
optimization 

CAF Runtime 
based on  
GASNet or 
ARMCI 



CAF Support in OpenUH 

CAF language support  
in front-end 

CAF optimization 
and translation to 
runtime 

CAF back-end 
optimization 

CAF Runtime 
based on  
GASNet or 
ARMCI 



Reverse-time Migration Code in CAF 

Forward Shot 
Comparison 
 
Total Domain 
Size: 1024 x 768 
x 512 (3.0 GB, 
per shot) 
Comparison: 
OpenUH CAF, 
Intel MPI 
 

 CAF port and results by Alan  
Richardson, Summer 2012 Internship, 
Total. 

n  A source wave is emitted per shot 
n  Reflected waves captured by array of 

sensors 
n  RTM (in time domain) uses finite 

difference method to numerically solve 
wave equation and reconstruct 
subsurface image (in parallel, with 
domain decomposition) 



PGAS Compiler Performance Optimization 

n  Reduce Messaging Overhead of Remote Accesses 
q  aggregate fine-grained accesses; optimal message size is system 

dependent 
q  identify communication patterns and convert 1-sided communication 

to optimized collective operations 
n  Reduce Round-trip Cost of Remote Accesses 

q  generate split-phase access and use code motion to increase 
overlap of computation with in-progress remote accesses 

q  transmit “codelets” to initiate a computation at the target rather than 
bring in data 

n  Reduce Synchronization Overhead 
q  compiler analysis to identify over-synchronization  
q  transformations to use split-phase barriers or point-to-point 

synchronization 



Standard OpenMP Implementation 

n  Directives implemented via 
code modification and 
insertion of runtime library 
calls 
q  Basic step is outlining of code in 

parallel region 
q  Or generation of microtasks 

n  Runtime library responsible 
for managing threads 
q  Scheduling loops 
q  Scheduling tasks 
q  Implementing synchronization 
q  Collector API provides interface 

to give external tools state 
information 

n  Implementation effort is 
reasonable 

OpenMP Code Translation 

int main(void) 
{ 
int a,b,c; 
#pragma omp parallel \ 
private(c) 
do_sth(a,b,c); 
return 0; 
} 

_INT32 main() 
{ 
int a,b,c; 
/* microtask */ 
void __ompregion_main1() 
{ 
_INT32 __mplocal_c; 
/*shared variables are kept intact,  
substitute accesses to private 
variable*/ 
do_sth(a, b, __mplocal_c); 
} 
… 
/*OpenMP runtime calls */ 
__ompc_fork(&__ompregion_main1
); 
… 
} 

Each compiler has custom run-time support. Quality of the 
runtime system has major impact on performance. 



Alternative OpenMP Translation for 
Asynchronous Execution 
 

   
 

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution 
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002 

n  Compiler translates “standard” 
OpenMP into collection of work 
units (tasks) and task graph 

n  Analyzes data usage per work unit 
n  Trade-off between load balance 

and co-mapping of work units that 
use same data 

n  What is “right” size of work unit? 
q  Might need to be adjusted at run time 



IN|OUT|INOUT for Dependent Tasks  
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41. LU Decomposition with task extensions

1 #pragma omp p a r a l l e l
2 {
3 #pragma omp master
4 {
5 f o r ( i =0; i<mat r i x s i ze ; i ++ ) {
6
7 /∗∗∗∗ Processing Diagonal b lock ∗∗∗∗ /
8 ProcessDiagonalBlock ( . . . . . . . ) ;
9
10 f o r ( i =1; i<M; i ++){
11
12 #pragma omp task out(2*i) /∗∗ Processing block on column ∗∗ /
13 ProcessBlockOnColumn ( . . . . . . . . ) ;
14
15 #pragma omp task out(2*i+1) /∗∗ Processing block on row ∗∗ /
16 ProcessBlockOnRow ( . . . . . . . . . . . . . . . . . . . ) ;
17 }
18
19 /*** Elimination of Global Synchronization point ********/
20
21 /∗∗∗∗ Processing remaining inner b lock ∗∗∗∗ /
22 f o r ( i =1; i<M; i ++)
23 f o r ( j =1; j<M; j ++){
24 #pragma omp task in(2*i) in(2*j+1)
25 ProcessInnerBlock ( . . . . . . . . . . . . . . ) ;
26 }
27 #pragma omp taskwa i t
28 }
29 }
30 }

Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, V. Sarkar, and G. Gao. Synchronization for dynamic task parallelism on manycore
architectures. 2010

#pragma omp task out [t1, t2, …] 
#pragma omp task in [t1, t2, …] 
 

Runtime 
•  Avoid the use of  global locks 
•  Allows workstealing 
•  Decentralized dependence setup 

and resolution 49. Speedup: LU Matrix 4096 - O3 optimization

Performance comparison with respect to similar dataflow models
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Performance in seconds for matrix size 4096 X 4096, with 16 blocks per dimension
Size:4096, block:16 OpenUH ext OmpSs dep Quark

1 58.90 69.80 59.57
2 31.51 37.06 34.01
4 16.10 20.31 18.67
8 8.90 11.97 11.20
16 5.30 8.05 8.17
24 4.00 6.99 7.64
32 3.41 6.67 7.44
48 2.46 6.84 7.69

OpenUH with task extensions outperforms OmpSs and QUARK by 2.3X and 3X respectively
OmpSs and QUARK scale only upto 32 threads

OpenUH with extensions - performance benefit of 32%, OmpSs with extensions - performance degradation of 20%

48. Speedup: LU Matrix 4096 - O3 optimization
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SUN-Oracle
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Performance in seconds for matrix size 4096 X 4096 with 16 blocks per dimension
Threads GNU Intel OpenUH noext OpenUH ext Sun PGI OmpSs

1 58.94 52.49 58.84 58.9 50.22 71.56 93.24
2 29.57 26.24 30.28 31.51 25.06 47.93 39.2
4 19.77 17.05 19.14 16.1 18.22 27.2 21.5
8 11.69 10.41 11.3 8.9 11.73 14.94 12.72
16 7.13 6.28 6.93 5.3 7.76 8.26 8.61
24 5.41 4.77 5.42 4 6.38 6.07 8.61
32 4.6 3.99 4.52 3.41 5.79 4.9 7.85
48 4.05 3.34 3.62 2.46 5.11 3.8 5.45
OpenUH with task extensions outperforms OpenUH without task extensions by a margin 1.47X

OpenUH compiler outperforms GNU, Intel, Oracle, PGI and OmpSs by 1.64X, 1.35X, 2X, 1.5X and 2.21X respectively



Adapting Translation to New Kinds of Memory  

P
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1
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End
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slave thread #1
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Execute 
“micro_task()”

start
 msg

completion 
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Initialization 
micro_task context

send request

Execute micro_task()

barrier
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Initialization 
micro_task context
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Execute micro_task()

barrier

barrier

slave thread #1

snoop for nequest

Execute 
“micro_task()”

barrier

slave thread #1

snoop for nequest

Execute 
“micro_task()”

barrier

n  Scratchpad memory, lack of coherent memory 
n  Slow shared memory, … 

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance 
Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In 
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009. 
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Runtime Locality-Aware Scheduling 

n  Locality-aware scheduling and data affinity 
q  A worker executes tasks at ancestor places from 

bottom-up 
q  Tasks from a place can be executed by all of the 

workers of the place subtree 
n  Lightweight synchronization 
n  Hybridization and heterogeneity 

q  Helper thread(s) 
q  Handling remote and async operations and call backs 

n  Runtime adaptation 
q  Task-level auto-tuning 

PL1 PL2 

PL0 

PL3 

w0 

PL4 

w1 

PL5 

w2 

PL6 

w3 



Runtime Must Adapt 
OpenMP 
Runtime 
Library 

Collector Tool 

OpenMP App 

Event 
callback 

Register 
event 

n  Runtime support to continuously 
q  Adapt workload and data to environment 
q  Respond to changes caused by application characteristics, power, 

(impending) faults, system noise 
q  Provide feedback on application behavior 

n  Collector Interface, implemented in compiler’s runtime, 
enables monitoring of OpenMP program 
q  Enables tools to interact with OpenMP runtime library 
q  Event based communication (OMP_EVENT_FORK, OMP_EVENT_JOIN, 

n  Do useful things based on notification 



Small “Mistakes”, Big Consequences 

n  GenIDLEST 
q  Scientific simulation code 
q  Solves incompressible Navier 

Stokes and energy equations 
q  MPI and OpenMP versions 

n  Platform 
q  SGI Altix 3700 (NUMA) 
q  512 Itanium 2 Processors 

n  OpenMP code slower than MPI 

OpenMP version 

MPI version 

In the OpenMP version , a single procedure is responsible for 20% of  
the total time and is 9 times slower than the MPI version . Its loops are up 
to 27 times slower in OpenMP than MPI.     



A Solution: Privatization 

• Lower and upper bounds of arrays used 
privately by threads are shared, stored in same 
memory page and cache line 

• Here, they have been privatized. 
 
• The privatization improved the performance of 
the whole program by 30% and led to a speedup 
of 10 for the procedure. 
 
•  Now procedure only takes 5% of total time 
 

OpenMP Optimized Version 



False-sharing at Work 

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

This is False Sharing at work !
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we increase the number of 

threads

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance comparison
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Modeling False Sharing at Compile-Time 
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Compile-time assessment  
n  Analyze array references to generate 

a cache line ownership list 
n  Apply a stack distance analysis 
n  Compute the FS overhead cost 

M. Tolubaeva, Y. Yan and B. Chapman. Compile-Time Detection of False Sharing via Loop 
Cost Modeling. HIPS'12 Workshop in conjunction with IPDPS'12  



False Sharing: Monitoring Results 

n  Cache line invalidation measurements (in Phoenix suite) 

Program name 1-thread 2-threads 4-threads 8-threads 
histogram 13 7,820,000 16,532,800 5,959,190 
kmeans 383 28,590 47,541 54,345 
linear_regression 9 417,225,000 254,442,000 154,970,000 
matrix_multiply 31,139 31,152 84,227 101,094 
pca 44,517 46,757 80,373 122,288 
reverse_index 4,284 89,466 217,884 590,013 
string_match 82 82,503,000 73,178,800 221,882,000 
word_count 4,877 6,531,793 18,071,086 68,801,742 



False Sharing: Data Analysis Results 

n  Determining the variables that cause misses 

Program 
Name 

Global/static data Dynamic data 

histogram - main_221 

linear_regression - main_155 

reverse_index use_len main_519 

string_match key2_final string_match_map_2
66 

word_count length, use_len, 
words 

- 



Runtime False Sharing Detection 
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B.	  Wicaksono,	  M.	  Tolubaeva	  and	  B.	  Chapman.	  “Detecting	  false	  sharing	  in	  OpenMP	  
applications	  using	  the	  DARWIN	  framework”,	  LCPC	  2011	  



DARWIN: Feedback-Based Adaptation 

n  Dynamic Adaptive Runtime Infrastructure  
q  Online and offline (compiler or tool) scenarios 
q  Monitoring 

n  Capture performance data for analysis via monitoring 
n  Relate data to source code and data structures 
n  Apply optimization and / or visualize 
n  Demonstrated ability to optimize page placement on NUMA 

platform; results independent of numthreads, data size 

OpenMP 
Runtime 

Persistent 
Storage data analysis 

DARWIN 
profiling data-centric 

information 

Besar Wicaksono, Ramachandra C Nanjegowda, and Barbara Chapman. A 
Dynamic Optimization Framework for OpenMP. IWOMP 2011	  



An Information-Rich Environment 
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•  Coordinated 
management of system 
resources 

•  Application metadata 
used by compiler, tools 
and runtime 

•  Use with architectural 
information, system 
state, smart monitoring 
for adaptation on the fly 

•  Compiler modeling for 
dynamic optimization as 
well as feedback to 
user, tools 

•  And much more… 

•  Compiler, tools collaborate to support application 
development and tuning 

•  All components cooperate to increase execution 
efficiency 



Additional Slides 

n  BACKUP SLIDES FROM HERE  



Results – Smith Waterman (-O0 optimization) Sequence Size: 4096 

Performance (in secs) with task chunk size 320, w.r.t. commercial compilers : 
 
 
 
 
 
 
 
 
 
Performance (in secs) with task chunk size 320 w.r.t. related dataflow models: 
 
 
 Threads OpenUH_ext OmpSs_ext Quark 

2 1.045 52.251 2.639 
4 0.511 50.640 2.278 
8 0.480 48.645 2.081 

16 0.669 46.256 2.395 
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We are also developing a certification suite to test emerging OpenACC implementations for completeness and 
semantic correctness to ensure that these implementations achieve a high degree of conformity with the 
standard. The certification suite consists of applications from several well-known benchmark suites such as 
NAS, PARBOIL, Rodinia and others. The applications were chosen based on several domains and include a 
variety of computational methods.  
 
The certification suite has been evaluated on an NVIDIA Kepler GPU and an Intel Xeon CPU with 8 cores. 
Table 2 shows a comparison of the speedup of OpenACC for a variety of applications to sequential version, 
OpenMP Version 3.1 (8 cores) and CUDA (4.2 &5.0). 

 
Table 2: Speedup of OpenACC for various applications. 

 

Applications Domains OpenACC Directive 
Combinations 

Lines of Code 
Added vs Serial Speedup Over 

OpenMP OpenACC Seq OpenMP CUDA 

Needleman-
Wunsch Bioinformatics 

data copy, copyin                                             
kernels present 
loop gang, vector, private 

6 5 2.98 1.28 0.24 

Stencil Cellular 
Automation 

data copyin, copy, deviceptr                        
kernels present 
loop collapse, independent 

1 3 40.55 15.87 0.92 

Computational 
Fluid Dyanmics 

(CFD) 
Fluid Mechanics 

data copyin, copy, deviceptr 
data present, deviceptr                                        
kernels deviceptr 
kernels loop, gang, vector, private                                              
loop gang, vector 
acc_malloc(), acc_free()                                                       

8 46 35.86 4.59 0.38 

2D Heat (grid 
size 4096*4096) Heat Conduction 

data copyin, copy, deviceptr                
kernels present                                    
loop collapse, independent 

1 3 99.52 28.63 0.90 

Clever (10Ovals) Data Mining 

data copyin                                          
kernels present, create, copyin, 
copy  
loop independent 

10 3 4.25 1.22 0.60 

FeldKemp 
(FDK) 

Image 
Processing 

kernels copyin, copyout                         
loop, collapse, independent 1 2 48.30 6.51 0.75 

 
We observed that the certification suite exhibits a set of behaviors. For example, OpenACC speedup ranges 
from 2.98 to 99.52 over the sequential version and from 1.22 to 28.63 over 8-core OpenMP version. The 
applications have been chosen based on their computations and communication patterns.  
 
We also observed that OpenACC is yet to achieve good speedup compared with that of the CUDA version of 
the applications. It may be because the OpenACC compilers do not generate an optimized GPU code. Deeper 
analysis of the OpenACC code may lead to further enhancements to the code and better speedup. However 
with respect to the sequential and OpenMP version of the applications, we notice improved speedup in each 
case. We are aware that OpenMP, a directive-based model, is good at retaining most of the code structure, and 
still be able to express parallelism. The LOC (Lines of Code) column shows that OpenACC also offers similar 
advantages. For the application CFD, we notice that LOC was significantly different to that of OpenMP, this is 
primarily because we have used acc_malloc(), acc_free() and runtime routines, but it is evident that OpenACC 
offers better speedup.  
 
Consequently, we think current OpenACC implementations allow applications to be ported to GPUs in a 
successful manner in terms of programmability and portability.  



OpenMP Locality Research  
Locations := Affinity Regions, Based on Locales, Places 

n  Means to manage data layout 
and enhance locality. 

n  Adapts Chapel/X10 ideas 
q  Represent execution environment 

by collection of “locations” 
q  Map data, threads to a location; 

distribute data across locations 
q  Align computations with data’s 

location, or map them explicitly 

n  Significant performance boost 
on mid-size SMP systems. 

Lei Huang, Haoqiang Jin, Barbara Chapman, Liqi Yi. Enabling Locality-Aware 
Computations in OpenMP. Scientific Computing, Vol 18, Numbers 3-4, 169-181, 
IOS Press Amsterdam, 2010 



n  Leverages the DSP shared 
memory architecture for 
multicore. 

n  Makes use of dedicated 
DSP hardware for fast 
synchronization. 

n  Runs efficiently on TI’s 
SYS/BIOS™ realtime 
operating system (RTOS). 

TI’s OpenMP solution stack. The C66x compiler translates OpenMP into multi-
threaded code with calls to the runtime API. The runtime library is implemented 
on top of distributed copies of SYS/BIOS and IPC. 

TI’s OpenMP Solution Stack 


