Enabling Exascale Programming: A
System-Wide Challenge

Barbara Chapman

University of Houston

31e Forum ORAP
Paris, 3/25/2013

/=\HPC

Acknowledgements: NSF CNS-0833201, CCF-0917285;
TOOLS

DOE DE-FC02-06ER25759, TOTAL SA \ -
http://www.cs.uh.edu/~hpctools

Agenda

The Challenge

Programming Models: What's Out There?
Compiler Efforts: Increasing the Benefits
Runtime Support and System Interactions

3

Number of Cores

Exascale: Anticipated Architectural Changes

1 1.6x10°
512 | 256 Cores ——/_\ .
6 —e— Cores in topmost system
osg |+ 4-way SIMD FMACs @ 2.5-5 GHz . 1.4x10 pmost sy
* 5-10 TFlops on one chip ntel M 1.2%10°
128 | . Some apps require 1 byte/flop TFiops arggore o Average number of
64 | *5-10 TB/s of off-chip/on-chip BW Tiera @ THeps 9 1.0x10° cores in top-ten systems
TILE64 © -
% G oG >
16 Mt @ faza e @ @Rock Q
oCell E
8 Niagra @ @ Nehalem 35
Barcelona zZ
4 @ @ Nehalem
o Power4. Opteron @ XBox360
286 386 486 Pentum P2 p3 p4 CO'€2 Powerd
1 o0 o o O 000O-ltanium
Athalon

1980 1985 1990 1995 2000 2005 2010 2015 2020

Massive (ca. 4X) increase in concurrency
Mostly within compute node
Node architecture is changing considerably
Core count, heterogeneity, memory size & BW, power,
resilience
Balance between compute power and memory
changes significantly
50x FLOPs of 20PF HW but just a small increase in memory
Memory access time lags further behind

Multicore Programmer’s Wish List

= Rewriting applications from scratch Portability,
requires considerable time and Portablity,
effort

Portability!

o Need easy way to parallelize
existing codes

o Incremental migration path
essential for major applications

= ...with familiar and/or commodity
programming models

o Not all programming models are
created equal

o None are perfect, but industry
adoption is critical

HPC Programming Model Ingredients

Performance

o Parallelism; load balance;
minimization of waits

Portability

o Across diverse, perhaps
heterogeneous systems

Multiple layers of
potentially different

Power-saving kinds of parallelism

| in hardware
o Mainly via locality

And let’s not forget Productivity

Agenda

The Challenge

Programming Models: What’s Out There?
Compiler Efforts: Increasing the Benefits
Runtime Support and System Interactions

The PGAS Approach

memory memory memory

Characteristics:
= Global view of data | e LD LR

= Data affinity part of
memory model

= Single-sided remote

access process process process
Advantages:
= more representative of modern

. Language Extensions:

NUMA architectures UPC, Coarray Fortran (CAF), Titanium
= Works well for distributed Libraries:

interconnects with RMA OpenSHMEM, Global Arrays, GASPI

support “APGAS”:

o X10, Chapel, Fortress, CAF 2.0
= Productivity and performance

Example: Coarray Fortran (CAF)

= SPMD execution model; each executing unit is called an image

= Remotely accessible data declared as coarrays

= Adds support for various synchronization mechanisms to the language
(e.g. barriers, locks)

= Support for teams, collectives, atomics, and event-based synchronization
around the corner

= Part of the Fortran standard (Fortran 2008)

real, allocatable :: a(:,:)[:,:], b(:,:)[:,:], ¢(:,2)[:.:]

allocate(a(N,N)[P,*], b(N,N)[P,*1, c(N,N)[P,*])
myP = this_image(a,1)

Matrix Multiply example:

= Coarrays allocated symmetrically myQ = this_image(a,2) 1 2 3 4 *
. . . . PR a=10
n :clagetllndexlllgfo obtained through intrinsic | _ ' 1/. BB) .\
unction ca -
, c=00 A 1 1| cl:,)(3,4]
= sync all for global barrier myP =3
sync all 3 myQ = 4

= Remote data accesses are achieved
through co-indexed coarray references do i=1,N

do J=1N vl N
do I=1,P
c(i,j) = c(i,j) + sum(a(i,:)[myP,I7*b(:,j)[|,myQ]
end do
end do
end do

Defacto Mature Standard OpenMP

CiIC++1.0 C/IC++ 2.0 SO
Fortran 1.0 Fortran 1.1 Fortran 2.0 OpenMP25 = OpenM OpenMP 3.1 OpenMP 4.0

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2013

High-level API for shared memory programming

o Widespread vendor support and a large user base

o User makes strategic decisions; compiler figures out details
OpenMP code is portable

o Across compilers, runtimes
o Mainstream compilers for Fortran, C and C++ support OpenMP

#pragma omp parallel
#pragma omp for schedule(dynamic)
for (I=0;I1<N;I++){
NEAT _STUFF(I);
} I* implicit barrier here */

‘ Keeping OpenMP Relevant

NUMA Node D

e)

HEJH e HEHEHE
HEYHEHE

D

L1~ 64 kb
L2=512

z
c
5
z
4
N

B

»
I
w

o) e

—

EUHE !
)

[.]
r
dw

il

-
:

. :

IO Hub

Lowew

4 2-way AMD Opteron
6174 Magny-Cours
processor (24 physical
cores)

4 Nvidia Tesla M2050
GPUs (440 compute
cores), 3GB GDDR5

OpenMP ARB 2013

—ar VAR

L g

upl

SO DR g
{
.

g

11

Upcoming OpenMP 4.0

Release Candidate 1 @ SC12
Release Candidate 2 ~March 2013

Candidate topics:
o Accelerator

o Affinity and locality

o Task extensions: task group and dependent tasks
o Error model

o SIMD extensions

o Tools interface

o User-defined reductions

OpenMP 4.0 Attinity Proposal

OpenMP places and thread affinity policies
o0 OMP_PLACES to describe places in system
o affinity(spread|compact|true|false)

SPREAD: spread threads evenly among the places

spread 8

compACT: collocate OpenMP thread with master
thread 00 || p1 |[p2 || p3 % o5 || p6 || p7

0000/000010000]0000 0000/0000]0000
compact 4

O p enMP S IMD iZ atio n Intecl' MIC Architecture Programming

#pragma omp simd [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:

safelen(length) linear(list[:linear-step]) aligned(list[:alignment])
private(list) lastprivate(list) reduction(operator:list) collapse(n)

The simd construct can be applied to a loop
Indicates that it can be transformed into a SIMD loop

Multiple iterations of the loop can be executed
concurrently using SIMD instructions

Can also be combined with parallel loop (for or do)

14

‘ OpenMP Performance Tools Interface

= int__omp_collector_api(void *msg)

= Single routine used by
tools to communicate with ©
runtime.

“ One call, many requests.

" Supports events/states
needed for statistical
profiling and tracing tools !

" Current work extends

original design from Sun

OpenMP Runtime

OpenMP Program
(object code)

¢

executable (./a.out)

Library
Collector API

]

N i
o) C
> o)
o >
o))
S

OpenMP 4.0 Accelerator Model

target

= Execution Model: Offload data

and code to accelerator

o target construct creates tasks to Copy in

remote
data P

be executed by devices roplcation roteaton
= Memory Model: data data

Copy out

o shared data copies synchronized
implicitly at end of target
construct regions or explicitly

remote data

using a target flush construct.

Vv

= Intended to work with wide
variety of accelerators

Tgsks offloade
b accelerator]

daccC. cores

[l

= User maps data to and from the
device memory

= Enables hierarchical parallelism

16

OpenACC

= High-level directive-based
programming model for
heterogeneous architectures

o Collection of compiler directives
to specify loops and regions of
code in standard C, C++ and
Fortran

o Enables scientific Fortran and C
programmers to take advantage
of heterogeneous CPU/GPU
computing systems.

o Takes multiple levels of parallelism
for GPUs into account

htp://www.openacc-standard.org/

OpenACC 2.0

Support for procedure calls

Compiler needs to know what procedures are needed on the
device — This is done by the ‘routine’ directive

Routine with a ‘bind’ clause tells the compiler to call a routine
with a different name when calling on the accelerator

Nested Parallelism

Device Specific Tuning

o Tuning for multiple devices in a single program
Data Management Features

o To manage data lifetimes on the device

Async Clause

o To resolve dependencies between multiple async
handles without requiring the host thread to wait

Loop directive additions
New-APlroutines

18

Agenda

The Challenge

Programming Models: What's Out There?
Compiler Efforts: Increasing the Benefits
Runtime Support and System Interactions

Machine Aware Compilation

Restructure work units

o Merging or splitting work units for better granularity
o Guided by parameterized cost model

Application structural representation

2 Work units and dependences

o Data distribution among places [roxparalel Appicarons |
. . . . ’ High-Level Code Restructuring ‘
Complle time apprOX|mat|on | 1
o Data mapping onto places @%ﬁ 1 1\
o Data binding with work unit ~ [ana _ﬁﬁ Tk Graohparsionandvarne_| | I

o Decision honored by runtime R r——

But may be adapted and refined. L—%V/J
4% REX Runtime System ‘

Compiler Cost Models Guide Translation

Conventional cost model
o Mostly evaluates cache effects of uniprocessors

Modeling sharing and contention effects
o Needed on multi- and many-core architectures
o Consideration of the memory hierarchy structure

o False sharing, shared cache contention, and memory bandwidth
contention and latency

Node model

o Multiple kinds of cores, interconnect, structure of memory
hierarchies

Supports compile-time and runtime optimization
o Data placement and affinity between tasks and data
o Mapping task graphs to the hardware architectures
o Guided energy-aware scheduling

21

What to Model? ‘

Computational
resource cost

Dependency

latency cost

Register spill
O

peration cos

Issue cost

em ref cost

v

Parallel model

Cache cost

TLB cost

L oop overheaq

A

arallel overhead

—»

Reduction cost

Operation Energy (pJ) |DP FLOPs

I$ Fetch 33

Access 3D$ 100
Access 3 L2 D$ 460
Access 3 off chip 762

Register Access (3W) 10.5

Access 3 from DRAM 6000

HT3 BW vs Threads on 2 Istanbuls

8119,38975 8906,8519
10000 6758,7862

SR 6046,2975 ; 5723
4853,0810 45466893, 22l 86,8672 49 4434 11235 89
2698919506 60018 1 3 VOIS, Q57 1573 72‘1@%%%7%8% ’ I | ;

0

1+2 2+2 3+1 1+4 3+2 442 5+1 3+4 2+5 6+1 4+4 5+3 2+6 5+4 6+3 4+6 5+6
Thread Configuration (# of remote + # of local threads)

BW (MB/s)

142
m2+1
m2+2
H1+3

0.67
0.2
2

9

19
120

2.0
0.6
6
27
45
360

CAF Support in OpenUH

CAF language s
in front-end

Compiler Feedback

upport [RGNTENDS I
rtran 95/2003 /CAF, OpenMP

| Interprocedural Analysis

Source codes L

-

structur

E

CAF optimization
and translation to
runtime

Y

OMP & CAF PRELOWER

(Preprocess OpenMP/CAF)
L 7

Cost Models & LNO

OpenUH Co

Y

CAF Transformation and Lowering

|

IR-to-Source w/
runtime library calls
v

A Native
Compiler

OMP Transformation and Lowering

CAF back-end
optimization

Global Scalar Optimizer

y

IR-to-source

Code Generators
(x86 64, IA64, |1A32)

Object files

i Linking

Performance
Analysis Tools

Executables

Runtime Libraries
(OpenMP, CAF, etc.)

CAF Runtime
based on
GASNet or

ARMCI

CAF Support in OpenUH

Compiler Feedback

CAF language support [RONTENDS “
rtran 95/2003 /CAF, (

in front-end

| Interprocedural Analy

_
OMP & CAF PRELOW

structur

E

CAF optimization | (Preprocess OpenMP/(Inter-node
and translation to ¥ Optimizations
runtime Cost Models & LNC

0 Y

Q

% CAF Transformation and Lo N

c

)

o)

OMP Transformation and La

—

CAF back-end
optimization

L
IR-to-source

Global Scalar Optimi Intra-node
d I Optimizations

I
| ‘ I
Canrra radoc |

Loop Optimizer: Communication
communication vectorization Cost Model
Global Optimizer (Preopt): Feedback from
non-blocking communication Runtime
synchronization strength reduction

coalesce fine-grained communication

Lower to CAF runtime API

Global Optimizer (Mainopt)
Back-end Optimization

Code Generators
(x86_64, I1A64, 1A32)

u (OpenMP, CAF, etc.)

GASNet or
ARMCI

‘ Reverse-time Migration Code in CAF

= A source wave is emitted per shot

= Reflected waves captured by array of
sensors

= RTM (in time domain) uses finite
difference method to numerically solve
wave equation and reconstruct
subsurface image (in parallel, with
domain decomposition)

Forward Shot 03 1.5
Comparison . CAF —m— @
£ 025 o MPI - 125
.]
Total Domain § C ~ k5 1
Size: 1024 x 768 £ U2 2
x 512 (3.0 GB, 01 . 5 0.75
Q . T o
per shot) = B e o
Comparison: E 01 T m E 0.5
OpenUH CAF, = 095
Intel MPI 0.05 '

0 100 200 300 400 500 600

Number of processors

CAF port and results by Alan
Richardson, Summer 2012 Internship,
Total.

(a) Isotropic

CAF —m—
MPI L
-
o _.' - e
— ___‘_::'

100 200 300 400 500 600

Number of processors
(b) TTI

PGAS Compiler Performance Optimization

Reduce Messaging Overhead of Remote Accesses

o aggregate fine-grained accesses; optimal message size is system
dependent

o identify communication patterns and convert 1-sided communication
to optimized collective operations

Reduce Round-trip Cost of Remote Accesses

o generate split-phase access and use code motion to increase
overlap of computation with in-progress remote accesses

o transmit “codelets” to initiate a computation at the target rather than
bring in data

Reduce Synchronization Overhead

o compiler analysis to identify over-synchronization

o transformations to use split-phase barriers or point-to-point
synchronization

Standard OpenMP Implementation

Directives implemented via
code modification and
insertion of runtime library
calls

o Basic step is outlining of code in
parallel region

o Or generation of microtasks

Runtime library responsible

for managing threads

o Scheduling loops

o Scheduling tasks

o Implementing synchronization

o Collector API provides interface
to give external tools state
information

Implementation effort is

reasonable

OpenMP Code Translation
int main(void) _INT32 main()

{ {

int a,b,c; inta.b.c;

#pragma omp parallel \
private(c)

do_sth(a,b,c);

return O;

}

/* microtask */

void __ompregion_main1()

{

_INT32 __mplocal_c;

[*shared variables are kept intact,
substitute accesses to private
variable*/

do_sth(a, b, _mplocal_c);

}

/*OpenMP runtime calls */
__ompc_fork(&__ompregion_main1

);

}

Each compiler has custom run-time support. Quality of the
runtime system has major impact on performance.

Alternative OpenMP Translation for
Asynchronous Execution

Compiler translates “standard”
OpenMP into collection of work
units (tasks) and task graph

Analyzes data usage per work unit

Trade-off between load balance
and co-mapping of work units that
use same data

What is “right” size of work unit?

o Might need to be adjusted at run time

Fig. 5. DAG of QR for a 4x4 tile matrix.

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

IN|OUT |[INOUT for Dependent Tasks

Speedup Vs 1 thread

E“E ii 1 | #pragma omp parallel
COEIEIH] 2
I'T I 3 #pragma omp master
e mmll| 1 | 4
Ll I I 5) for (i=0; i<matrix_size; i++) {
|| il 1] | 6
= It i 7 /=xxx Processing Diagonal block ssxsxx/
['_—“["[]'[' g ProcessDiagonalBlock (.......)
10 for (i=1;i<M;i++){
11
12
13 | ProcessBiockOnCoiumn (........)
14
15 ocessing
16 ProcessBilockOmRow (...)
17 }
18
19 mm Synchronization point ********/
20
21 /xxxx Processing remaining inner block xxxx/
22 for (i=1;i<M;i++)
23 for (j=1;ji<M;]
24 #pragma omp task in(2%) in(2*j+1)
25 ProcessinnerBiockK (...)
26
27 #pragma omp taskwait
28
24 o GNU —+—
Intel ----3¢---
OpenUH-without ext %
OpenUH-with ext
UN-Oracle
PGI -
OmpSs -~

1 2 4 8 16 24 32 48
Number of threads

Speedup Vs. 1 thread

ocessing block on column xx*

block on row xx/

24
22
20
18
16
14
12
10

o N A O

#pragma omp task out [t1, t2, ...]
#pragma omp task in [t1, 2, ...]

Runtime
* Avoid the use of global locks

* Allows workstealing
* Decentralized dependence setup
and resolution

OpenUH-with ext —+—
/ QUARK
/M
e
7
)
e
I
2 4 8 16 24 32 48
Number of threads
29

Adapting Translation to New Kinds of Memory

Scratchpad memory, lack of coherent memory
Slow shared memory, ...

allel region 1

v

Initialization ‘

Initialization
micro_task context

v

send request }

v

& ‘ Execute micro_task() ‘

L]

barrier

slave thread #1

slave thread #1

slave thread #1

Parallel region 2

v

Initialization
micro_task context

v

send request

v
=l

snoop for nequest

-

v

Execute
“micro_task()”

A

v

Execute micro_task()

L]

Vg

barrier

b

snoop for nequest

-

v

Execute
“micro_task()”

v

barrier

=i

snoop for nequest

-

v

Execute
“micro_task()”

:

barrier

barrier

iE]

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance

v

completion
msgs

Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009.

Agenda

The Challenge

Programming Models: What's Out There?
Compiler Efforts: Increasing the Benefits

Runtime Support and System-Wide
Interactions

Runtime Locality-Aware Scheduling

Locality-aware scheduling and data affinity

o A worker executes tasks at ancestor places from
bottom-up

o Tasks from a place can be executed by all of the
workers of the place subtree

Lightweight synchronization
Hybridization and heterogeneity

PL6

o Helper thread(s) -

o Handling remote and async operations and call backs

Runtime adaptation
o Task-level auto-tuning

Runtime Must Adapt
OpenMP

OpenMP App Runtime
Library

Register Event
event callback

Runtime support to continuously
o Adapt workload and data to environment _—

o Respond to changes caused by application characteristics, power,
(impending) faults, system noise

o Provide feedback on application behavior

Collector Interface, implemented in compiler’s runtime,
enables monitoring of OpenMP program

o Enables tools to interact with OpenMP runtime library

o Event based communication (OMP_EVENT FORK, OMP_EVENT_JOIN,

Do useful things based on naotification

ll;l g(gnpcroou

Small “Mistakes”, Big Consequences

OpenMP version

GenIDLEST
o Scientific simulation code

o Solves incompressible Navier
Stokes and energy equations

o MPI and OpenMP versions
Platform

o SGI Altix 3700 (NUMA)
o 512 Itanium 2 Processors

OpenMP code slower than MPI
MPI version

In the OpenMP version , a single procedure is responsible for 20% of
the total time and is 9 times slower than the MPI version . Its loops are up
to 27 times slower in OpenMP than MPI.

A Solution: Privatization

*Lower and upper bounds of arrays used
privately by threads are shared, stored in same
OpenMP Optimized Version memory page and cache line

*Here, they have been privatized.

*The privatization improved the performance of
the whole program by 30% and led to a speedup
| of 10 for the procedure.

* Now procedure only takes 5% of total time

False-sharing at Work

!Somp parallel do default(shared) private(i) &
!Somp schedule(static)

doi=1, m

x(i,j, k) = x(1i,3,k-1) + x(1,3J-1,k) *scale

end do

!Somp end parallel do

700

600

500

400

300

200

Performance (MF op/s)

100

0

10

20 30 40

Number of threads

CPUO CPU1
| |
Cache Line Cache Line
‘HEEEEEE
Cac;e éﬂis Ciche

5,

NEEEEEEEE

Memory

program scales better

For a higher value of M, the

Modeling False Sharing at Compile-Time

Compile-time assessment

Analyze array references to generate
a cache line ownership list

= Apply a stack distance analysis
T -T T -T
u Compute the FS Overhead COSt fs_measured " nfs_measured ~ fs_modelid nfs_modeled
fs_measured fs_modeled
FFT Heat Diffusion
50 30
0 40 3]
§ £ 20
o 30 - o
£ £ 15 -
E 20 - " Actual _c:’i " Actual
e = Modeled & 10 = Modeled
K7} 10 7 0 5 -
© ©
w w
0 - 0 -
2 4 8 16 24 32 40 48 2 4 8 16 24 32 40 48
Number-of Threads Number-of Threads

M. Tolubaeva, Y. Yan and B. Chapman. Compile-Time Detection of False Sharing via Loop -
Cost Modeling. HIPS'12 Workshop in conjunction with IPDPS'12

False Sharing: Monitoring Results

Cache line invalidation measurements (in Phoenix suite)

histogram
kmeans
linear_regression
matrix_multiply
pca
reverse_index
string_match
word_count

13
383

9
31,139
44,517
4,284
82
4,877

7,820,000
28,590
417,225,000
31,152
46,757
89,466
82,503,000
6,531,793

16,532,800
47,541
254,442,000
84,227
80,373
217,884
73,178,800
18,071,086

5,959,190
54,345
154,970,000
101,094
122,288
590,013
221,882,000
68,801,742

‘ False Sharing: Data Analysis Results

= Determining the variables that cause misses

Program Global/static data |Dynamic data
Name

histogram - main_221

linear_regression - main_155

reverse index use len main_519

string_match key2 final string_match_map 2
66

word_count length, use len, -

words

Runtime False Sharing Detection

Original Version

B 1-thread ™ 2-threads
W 4-threads " 8-threads

Optimized Version

® 1-thread M 2-threads
4-threads ' 8-threads

8
§- 6
Q 4
o
w2
il el ol
AN X
& X .(\bg (5\(}\ S
S & > < P
@(b\ / QQA %\S $
&

B. Wicaksono, M. Tolubaeva and B. Chapman. "Detecting false sharing in OpenMP
applications using the DARWIN framework”, LCPC 2011

DARWIN: Feedback-Based Adaptation

Dynamic Adaptive Runtime Infrastructure
o Online and offline (compiler or tool) scenarios

o Monitoring
Capture performance data for analysis via monitoring
Relate data to source code and data structures
Apply optimization and / or visualize

Demonstrated ability to optimize page placement on NUMA
platform; results independent of numthreads, data size

OpenMP DARWIN Persistent
Runtime | profiling data-centric Storage data analysigi
information

Besar Wicaksono, Ramachandra C Nanjegowda, and Barbara Chapman. A
Dynamic Optimization Framework for OpenMP. IWOMP 2011

An Information-Rich Environment

- Compiler, tools collaborate to support application
development and tuning
- All components cooperate to increase execution

efficiency

« Coordinated
management of system
resources

* Application metadata
used by compiler, tools
and runtime

* Use with architectural
information, system
state, smart monitoring
for adaptation on the fly

+ Compiler modeling for
dynamic optimization as
well as feedback to
user, tools

* And much more...

Application
Development

Compiler

Build / Launch

Code
Generation

Runtime

I System I

Performance |
Me

\ Performance
Me"i urement
Build / Launch Paths of
Interoperation

Program
Execution

asurement

Parallel
System

Additional Slides

BACKUP SLIDES FROM HERE

Results — Smith Waterman (-O0 optimization) Sequence Size: 4096

Performance (in secs) with task chunk size 320, w.r.t. commercial compilers :

Time in seconds

Number of Threads

Intel —b—
GNU ----3¢---
OpenUH-without ext -
OpenUH-with-ext-V1 Bl
OpenUH-with-ext-V2 --#--

SUN-Oracle
PGl @ -
OmpSs -

Performance (in secs) with task chunk size 320 w.r.t. related dataflow models:

Threads OpenUH_ext | OmpSs_ext Quark
2 1.045 52.251 2.639
4 0.511 50.640 2.278
8 0.480 48.645 2.081
16 0.669 46.256 2.395

Benchmark Suite Results using K20

o Lines of Code
Applications Domains OpenACC D1.rectlve Added vs Serial Speedup Over
Combinations
OpenMP | OpenACC Seq OpenMP | CUDA
data copy, copyin
Needleman- Bioinformatics | kernels present 6 5 2.98 1.28 0.24
Wunsch)
loop gang, vector, private
data copyin, copy, deviceptr
Stencil Cellulgr kernels present 1 3 40.55 15.87 0.92
Automation .
loop collapse, independent
data copyin, copy, deviceptr
Computational Eziiglrsezzstj;ge:;weptr
Fluid Dyanmics | Fluid Mechanics P . 8 46 35.86 4.59 0.38
kernels loop, gang, vector, private
(CFD)
loop gang, vector
acc_malloc(), acc free()
. data copyin, copy, deviceptr
.2D Heat*(grld Heat Conduction | kernels present 1 3 99.52 | 28.63 0.90
size 4096*4096))
loop collapse, independent
data copyin
Clever (100vals) | Data Mining lgzg;els present, create, copyin, 10 3 425 | 122 | 0.60
loop independent
FeldKemp Image kernels copyin, copyout
(FDK) Processing loop, collapse, independent : 2 48.30 6.51 0.75

45

OpenMP Locality Research

Locations := Affinity Regions, Based on Locales, Places

Means to manage data layout
Data | Affiniy to location #1 | Affinity to location #2 and enhance locality.

' Adapts Chapel/X10 ideas

o Represent execution environment
by collection of “locations”
lScation | lScation #2 o Map data, threads to a location;
distribute data across locations
o Align computations with data’s
iGN | Mo S - location, or map them explicitly

Significant performance boost
on mid-size SMP systems.

Lei Huang, Haogiang Jin, Barbara Chapman, Liqi Yi. Enabling Locality-Aware

Computations in OpenMP. Scientific Computing, Vol 18, Numbers 3-4, 169-181,

IOS Press Amsterdam, 2010 / " PGTOOI’
,-/

OpenMP
Threads

OpenMP
Threads

TT’s OpenMP Solution Stack

Customer Applications

Leverages the DSP shared
memory architecture for
multicore.

OpenMP Programming Layer Makes use of dedicated

DSP hardware for fast
synchronization.

T ot Runs efficiently on TI's
N SYS/BIOS™ realtime

Operating System | operating system (RTOS).

’ SYS/BIOS

TI’'s OpenMP solution stack. The C66x compiler translates OpenMP into multi-
threaded code with calls to the runtime API. The runtime library is implemented

on top of distributed copies of SYS/BIOS and IPC.

