# Analyse des performances et de la consommation des processeurs embarqués

#### Jean-François Méhaut UJF-CEA/DRT, LIG, Grenoble

4 Octobre 2012



# Agenda

- Embedded Computing Technologies
  - ARM core processors
  - ARM Accelerators
- European Mont-Blanc Project
  - Objectives
  - Consortium
  - Platforms

## ARM Ltd

- Founded in November 1990
  - Spun out of Accorn Computers
- Designs the ARM range of RISC processors
- Licenses ARM core designs to semiconductors partners who fabricate and sell to their customers


ARM does not fabricate silicon itself

- Also develop technologies to assist with the design-in of the ARM architecture
  - Software tools, Boards, debug hardware, application software, bus architecture, peripherals,...

#### **ARM Partnership Model**

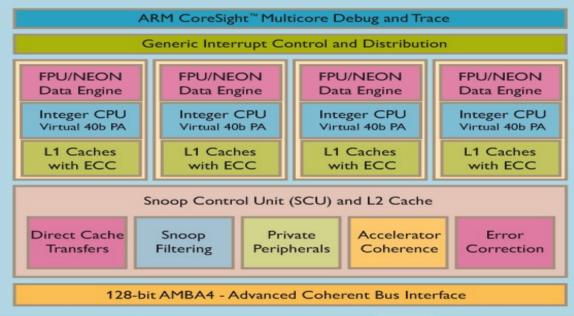


# **ARM Powered Products**



#### **Overview of ARM Processors**

- Focusing on Cortex A9 & Cortex A15
- ARM ships no processors but only IP cores
  - For SoC integration
- Targeting markets
  - Netbooks, tablets, smart phones, game console


MONT-BLANC

- Digital Home Entertainement
- Home and Web 2.0 Servers
- Wireless Infrastructure
- Design Goals
  - Performance, power, Easy Synthesis

### ARM Cortex A9/A15

- 1-4 Cores
- Out-of-Order Superscalar
- Branch Predictor
- 32KB L1 I/D caches
- ~4M L2 caches with coherency
- NEON (SIMD) & FPU
- 32/28nm (A15) 45nm (A9)

#### Cortex<sup>™</sup>-A15 MPCore

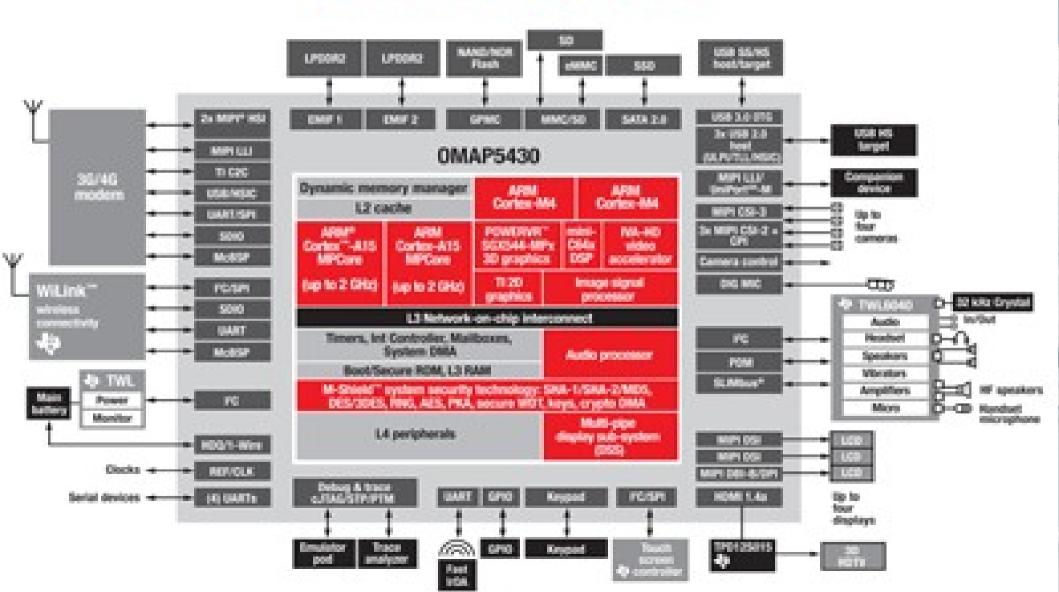


#### **Cortex-A15 – Low Power Computing**

CORTEX-A15 is ARM's highest performance applications processor to date

- Delivers 2x performance of current super smartphone in same low-power envelope
- Can deliver up to 8x performance for mobile applications

#### Wide range of end markets


- Consummers electronics, digital TVs, mobile computing
- Enterprise computing, servers, clouds, networking

First SoC arriving in market shortly

20 2.0 GHz Ouad Cortex-A15 "Seahawk" 15 Ð uct 1.5 GHz Dual 10 Cortex-A15 oertormance 1.5 GHz Single Cortex-A15 Current 1.2 GHz Dual smartphones Cortex-A9 Cortex-A

#### **Texas Instrument OMAP 5**

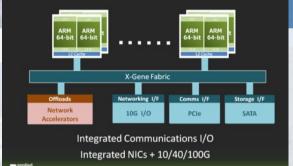
#### TI OMAP5430 SoC



# Comparison of ARM, Atom, i7

|           |                      | Cortex A15<br>(no L2, 32 nm) | Cortex A9<br>(no L2, 40 nm) | Atom N270<br>(45 nm)   | I7 960<br>(45 nm)       |
|-----------|----------------------|------------------------------|-----------------------------|------------------------|-------------------------|
| ñ         | Number of cores      | 2 (4 maximum)                | 2 (4 maximum)               | 1 Core<br>2 HT Threads | 4 Cores<br>8 HT Threads |
|           | Frequency            | 1 Ghz-2.5 Ghz                | 800 Mhz,<br>2 Ghz           | 1,6 Ghz                | 3,2 Ghz                 |
| C. P.C.W. | Out of Order?        | Yes                          | Yes                         | No                     | Yes                     |
| S side    | L1 cache size        | 32 KB I/D                    | 32 KB I/D                   | 32 KB I/D              | 32 KB I/D               |
| 100       | L2 cache size        | N/A                          | N/A                         | 512KB                  | 1 MB + 8MB L3           |
|           | Issue width          | 4                            | 4                           | 2                      | 4?                      |
| No.       | Pipeline Stages      | ?                            | 8                           | 16                     | 14~24 (?)               |
|           | Supply Voltage       |                              | 1,05V                       | 0,9-1,116V             | 0.8                     |
|           | Transistor count     | ?                            | 26,000,000                  | 47,000,000             | 731,000,000             |
| 11 11 11  | Die Size             | ?                            | 4,6 mm2<br>6,7 mm2          | 26 mm2                 | 263mm2                  |
|           | Power<br>Consumption | ?                            | 0,5W<br>1,9 W               | 2,5 (TDP)              | 130W (TDP)              |

# Comparison of ARM SoC, Atom, i7


|                      |                                               | and the second se |                         | and the second |
|----------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|
|                      | TI OMAP5<br>(28nm)                            | Nvida Tegra 2<br>(40 nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Atom N450<br>(45 nm)    | I7 2600S<br>(32 nm)                                                                                              |
| CPU cores            | 2 x A15<br>2 x M4                             | 2 x A9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Core,<br>2 HT threads | 4 Cores,<br>8 HT threads                                                                                         |
| CPU Frequency        | 2 Ghz (A15)                                   | 1 Ghz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,66Ghz                 | 2,6 Ghz                                                                                                          |
| GPUs ASICs           | Video, Audio,<br>Encryption, Display<br>2D/3D | 8 x GPUs,<br>Audio, Video,<br>ISP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 GPU                   | 1 GPU                                                                                                            |
| L2                   | ?                                             | 1 MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 512 KB                  | 1 MB + 8 MB                                                                                                      |
| Die Size             | ?                                             | 49 mm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66m2                    | ?                                                                                                                |
| Transistors          | ?                                             | 260,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123,000,000             | ?                                                                                                                |
| Package Size         | 17x17 mm2                                     | 23x23mm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22x22mm2                | 37.5x37.5 mm2                                                                                                    |
| Power<br>Consumption | ?                                             | 150~500 W?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,5 W (TDP)             | 65 W (TDP)                                                                                                       |

#### Extending Technology into the Data Centers

- Calxeda EnergyCore™ SoC Calxeda EnergyCore™ SoC EnergyCore Management Engine I/O Controllers SATA, PCle, Ethermet, SD/eMMC
- Quadcore Cortex-A9
- 1.2GHz
- 5W power including 4GB DRAM
- Integrated server fabric
- PCIe
- GbE
- USB 2.0



X-Gene Server on Chip



- Up to 32, 64-bit cores per SoC. 128 coherent processors per system
- 3GHz
- Network processors
- PCIe
- SATA
- 10GbE



### The challenges for Accelerators

- Benefit of offload must also outweigh the cost of offload
  - Additional software complexity
  - Additional data transfers
  - Overcome Transfer Latencies and associated power management
- The General Purpose Processor's ISA also advances
  - Floating point moves to FPU within CPU
  - DSP, SIMD, Crypto,...
- Only the large API abstracted, or edge accelerators appear to have a viable future
  - Menwhile the GPP can start to optimize through specialization

### The Integration of Graphics

- Graphics is a large (very large) API abstracted, "edge" accelerator
- Graphics is already a priority for anything with a screen
  - Smartphones,DTVs, Tablets, hand-held game consoles, In-Car Entertainment
- Large and Growing Market for GPU
  - 4 billion Internet Connected Screens in 2016, most with embedded graphics
- Looking towards a GP-GPU future?
  - ... but is it then still at the on the edge?







# Mali for Graphics and GPU Computing



Performance



Mali-T658

High end solution Maximum compute

2013

capability

#### Skrymir



- Designed for GPU Computing
  - Uncompromised support for OS/API choice

#### **Closer CPU-GPU links**

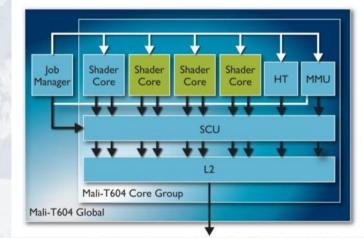
- Efficient Use of all device resources
- Maximize performance and battery life

#### Protecting partner investments

- Common software platform reduces cost and TTM
- Multicore delivers performance scalability over multiple form factors
- Roadmap for further share gains
  - Mali-T600 silicon shipping in consumer products in H2 2012
  - Skrymir driving design wins in next generation super-smartphines and mobile computeDesigned for GPU Computing

#### Mali-T604

First Midgard architecture product Scalable to 4 cores


Date of production chips

2014

2012

### Mali-T604: ARM's First GP-GPU

- Innovative GPU architecture
  - Designed for performance and flexibility
  - Leading graphics performance
  - Architected for GPU computing
  - State of the art bandwidth reduction
    - Optimized tile-based architecture
    - Transaction elimination
    - Hierarchical tiling
- A system approach
  - ARM CPU + GPU + Memory + Interconnect
  - Efficient, high-throughput design



#### Mont-Blanc - Objectives

- Develop prototypes of HPC clusters using low power commercially available embedded technology.
- Design the next generation in HPC systems based on embedded technologies and experiments on the prototypes
- Develop a portfolio of existing applications to test these systems and optimize their efficiency, using BSC's OmpSs programming model (11 existing applications were selected for this portfolio)

#### Mont-Blanc Consortium

- Barcelona SuperComputing (BSC)
  - Prototype hosting, programming model,...
- **Bull SA**

•

- System Integration, System software
- ARM
- Architecture (multicore, node, system)
- Gnodal
  - Interconnect switch
- Genci
- Applications (CEA INAC), Architecture (CEA Leti)

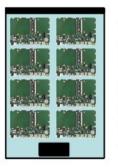
- CINECA
- Apps.
- JSC, LRZ
  - Apps, power consumption
- CNRS
- Architecture (LIRMM), Apps (CORIA, LMA, LIG) Auto tuning (LIG)

# Mont-Blanc - Applications

| Code                | Scientific Domain              | Contact                    | Institution |
|---------------------|--------------------------------|----------------------------|-------------|
| YALES2              | Combustion                     | V. Mouveau                 | CNRS/CORIA  |
| EUTERPE             | Fusion                         | T. Akgun                   | BSC         |
| SPECFEM3D           | Wave propagation               | D. Komatitsch              | CNRS        |
| MP2C                | Multi-particle collision       | G. Sutmann,<br>A. Schiller | JSC         |
| BigDFT              | Elect. Structure               | T. Deutsch                 | CEA INAC    |
| Quantum<br>Expresso | Elect. Structure               | C. Cavazzoni               | CINECA      |
| PEPC                | Coulomb + gravitational forces | P. Gibbon,<br>L. Arnold    | JSC         |
| SMMP                | Protein folding                | J. Meinke                  | JSC         |
| ProFASI             | Protein folding                | S. Mohanty                 | JSC         |
| COSMO               | Weather forecast               | M. Culpo                   | CINECA      |
| BQCD                | Particle physics               | M. Allalen                 | LRZ         |

### Montblanc Platforms

#### 13 blades of 8 harmony Tegra 2 boards already deployed


- 35W/blade
- 16 ARM Cortex A9 1GHz cores/blade
- Will be pushed to 256 nodes (32 blades)



Tegra2 SoC: 2x ARM Corext-A9 Cores 2 GFLOPS 0.5 Watt



Tegra2 Q7 module: 1x Tegra2 SoC 2x ARM Corext-A9 Cores 1 GB DDR2 DRAM 2 GFLOPS ~4 Watt 1 GbE interconnect



1U Multi-board container: 1x Board container 8x Q7 carrier boards 8x Tegra2 SoC 16x ARM Corext-A9 Cores 8 GB DDR2 DRAM 16 GFLOPS ~35 Watt



#### Rack:

32x Board container 10x 48-port 1GbE switches 256x Q7 carrier boards 256x Tegra2 SoC **512x ARM Corext-A9 Cores** 256 GB DDR2 DRAM 512 GFLOPS ~1.7 Kwatt

300 MFLOPS / W

# Snowball Board (ST Ericsson)

- Full embedded system
  - Dual Core ST-Ericsson ARM 1GHz SoC
  - Neon Floating Point Unit
  - Integrated GPU
  - 1 Gbyte RAM
  - HDMI output
  - Ethernet
  - Runs Linux (Linaro Ubuntu) or Android
  - Igloo community for development and support

MONT-BLANC

- 2.5W maximum energy consumption

#### **Conclusions - Mont-Blanc**

- Porting Apps to tibidabo is a success
- Most limitation come from the prototype and should be lifted in the next version
- Second round of porting is to begin
- SPECFEM3D and BigDFT kernels have been selected specifically for optimization