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Messages

I Geomagnetic data provided over the last decade by satellites (and used in
conjunction with observatory data) have allowed us to get a more accurate
description of the rapid variations of the main geomagnetic field
(generated inside earth’s core)

I This better description is an incentive for constructing and testing physical
models of core dynamics able to account for the observed geomagnetic
variations (in a data assimilation framework).
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The Earth’s main magnetic field
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Hulot, Sabaka, Olsen TOG 2007
Geomagnetic observations are connected with the (large-scale) radial component of the magnetic

induction, Br , at the core surface (the small scales are screened by the crustal field).
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The Earth’s main magnetic field

Br (nT) at Earth’s surface in 2007
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The variations of the main magnetic field

Ḃr (nT/y) at Earth’s surface in 2007
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Time and length scales

Instantaneous correlation times (Hulot & Le Mouël, PEPI, 1994)
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core. Many numerical dynamos produce realistic
large-scale magnetic fields: dominantly axial dipoles
with Elsasser number !’ 0.1; nearly flat spectra at
the core mantle boundary and realistic velocities
(magnetic Reynolds number Rm’ 100–1000), even
though the input Ekman number E, Rayleigh number
Ra, Prandtl number Pr, and magnetic Prandtl number
Pm are decidedly unrealistic. An example of an
advanced dynamo model is shown in Figure 14.
Some numerical dynamos have strong westward
drift and large zonal velocities at low latitudes,
although many do not have this feature. In many
models, the most rapid westward drift is found at
high latitudes, due to thermal wind-style flow within
the inner-core tangent cylinder.

How do different boundary conditions affect
numerical dynamos? The difference between no-
slip and free-slip boundary conditions is relatively
minor in dynamos with Newtonian (uniform) viscos-
ity, although it is large in dynamos using
hyperviscosity. In contrast, heat-flow boundary con-
ditions have a strong effect, particularly nonuniform
heat flow imposed at the core–mantle boundary.
Large variations in core–mantle boundary heat flow
tend to kill numerical dynamos. Moderate variations
in boundary heat flow generate departures from axi-
symmetry in the time-average magnetic field, and
also influence the frequency of polarity reversals.
The so-called ‘tomographic’ heat-flow boundary
condition assumes that core–mantle boundary heat
flow variations are proportional to seismic velocity
variations in the D0 layer. This boundary condition
produces heterogeneity in numerical dynamos that
can be compared with heterogeneity in the geomag-
netic field, including concentrated flux spots at high
latitudes, regions with westward drift, and regional
differences in the time-average magnetic field and
secular variation. In addition, calculations using this
boundary condition suggest that thermal coupling
between the mantle and the inner core is possible;
the nonuniform heat flow at the core–mantle bound-
ary is transmitted through the whole outer core,
producing azimuthal variations in heat flow at the
inner-core boundary. These characteristics are not
found in numerical dynamos with uniform core–
mantle boundary heat flow, which generate time-
average magnetic fields with axial symmetry.
Tomographic models do not explain all of the non-
dipole field however. In particular, they fail to
explain the large quadrupole component in the
paleomagnetic field.

Polarity reversals occur in numerical dynamos
with large temporal fluctuations, particularly when
the dipole field is weak and time variable. In some
cases the polarity transition is short, comparable to
the timescale of the transitions in the paleomagnetic
record. However, some reversals in dynamo models
are characterized by extremely long transition peri-
ods. Two broad classes of reversals have been found.
In convection-dominated dynamo models, large tem-
poral fluctuations are usually found at high Rayleigh
number where the flow is strongly chaotic. In these
dynamos the reversals are irregular (possibly ran-
dom) in time and seem to develop from
anomalously large reversed flux patches. It has been
shown that the frequency of these irregular reversals
is sensitive to thermal boundary conditions: bound-
ary heat flow that is compatible with the heat flow
pattern intrinsic to the dynamo stabilizes polarity,
whereas incompatible boundary heat flow destablizes
polarity (Glatzmaier et al., 1999). Dynamo models
with strong zonal flows also show polarity reversals,
but at more regular intervals. This type of reversal
may be produced by dynamo wave instabilities.

8.01.9 Mantle Effects within the Core

Many of the processes we associate with core dynamics
and the geodynamo have timescales that are short
compared to mantle dynamics timescales. Figure 15
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Data distribution vs. time: increase in quantity and accuracy

number of observations per year
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(Fournier et al., Space Sci. Rev., 2010)

archeomagnetic data (orange): geomagia database (Donadini et al., G3, 2009); historical data (black):

gufm1 (Jackson et al., PhilTrans,2000); satellite data (blue): xCHAOS (Olsen & Mandea, NGEO, 2008).

Satellite data make a difference: error in geomagnetic field models

0.02 (nT/y)2 for CHAOS vs. ∼ 30 (nT/y)2 in the 1980ies (Hulot et al., TOG, 2007).
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Relationship between observations and dynamics

Kinematic approach : seek the (large scale) core surface flow uh such that

∂tBr = Ḃr = −∇h · (uhBr )?

I Frozen-flux approximation (Roberts & Scott, JGG, 1965),
I Non-uniqueness. Extra hypotheses required: steady flow (Voorhies & Backus,

GAFD, 1985), tangencial geostrophy (Le Mouël, Nature, 1984), quasi-geostrophy (Pais

& Jault, GJI, 2008; Gillet et al., G3, 2009), . . . + regularization (Holme, TOG, 2007, for a

recent review)

I Spatial resolution error � observation error.

Eymin & Hulot, PEPI, 2005. Peak velocity: 37 km/y. Pressure

(color): ±1010 Pa.
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Assimilation of geomagnetic observations

A dynamical approach to the inverse problem of estimating the state of the core x
is in order (e.g. Talagrand, JMSJ, 1997, for a review on assimilation).

Ingredients:

1. observations

2. a dynamical model describing the physics of the processes under scrutiny

Goals:
I Probe the physics governing the secular variation: advection,

hydromagnetic waves, with an ounce (or more) of diffusion (e.g.

Hide, PhilTrans, 1966; Finlay & Jackson, Science, 2003; Gubbins, PEPI, 1996;

Chulliat & Olsen, JGR, 2010) Important because fundamental
I Make inferences on the interior of the core
I Retro-propagate the current quality of observations (Fournier et al., NPG, 2007)

I Increase the quality of the geomagnetic forecast, and assess its limits
(e.g. Kuang, Tangborn, et al., GJI, 2009; EPS, 2010)

Specific to the core problem ( 6= meteorology, oceanography)
I ‘Surface’ measurements only
I uncertainties in the knowledge of the background state (the

‘climatological’ mean)
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Convection-driven model of the geodynamo

Discretization of conservation laws and Maxwell’s equations, modified
Boussinesq codensity formalism of Braginsky & Roberts (GAFD, 1995).

∇ · u = 0, (1)

ρ (∂tu + u ·∇u + 2Ω× u) = −∇Π + j× B + ρν∇2u + Cg, (2)

∂tC + u ·∇C = κ∇2C + ST/ξ, (3)

∂tB = ∇× (u× B) + (1/µσ)∇2B, (4)

+ no-slip boundary conditions for u, insulating magnetic boundary conditions
at the ICB and CMB, prescribed codensity at the ICB and null codensity flux
∇C = 0 at the CMB.
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Numerical approach: the PARODY code

Authors

Emmanuel Dormy, Julien Aubert, Philippe Cardin
(and later collaborative developments).

Numerical scheme based on Glatzmaier (Journal of Computational Physics, 1984).

I poloidal-toroidal decomposition of u and B

u = ∇×∇× (uPr) + ∇× (uT r) ,

B = ∇×∇× (BPr) + ∇× (BT r) .

I Spherical harmonic expansion of uP , uT , BP , BT , and C266664
uP

uT

BP

BT

C

377775 (r , θ, φ, t) =
l=LX
`=0

m=X̀
m=−`

266664
uP `m(r , t)
uT `m(r , t)
BP `m(r , t)
BT `m(r , t)
C`m(r , t)

377775Ym
` (θ, φ)

I Finite differences in radius r

I Computation of nonlinear terms in physical space

I Second order semi-implicit time-differencing

Dormy, Cardin, Jault, EPSL, 1998; Aubert, Aurnou, Wicht, GJI, 2008
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Difficulties

Simulations are overdiffusive ; time scales are not in appropriate proportions

2. Dynamo models and their parameters

All modern geodynamo models basically consider a rotating
spherical shell filled with an electrically conducting fluid that rep-
resents the Earth’s outer core. Three coupled equations must be
solved: (1) An equation of motion for buoyancy-driven flow that
includes the effects of the Coriolis force and the electromagnetic
Lorentz force, (2) the magnetic induction equation and (3) an
advection–diffusion equation for temperature and/or the concen-
tration of light elements in the core. The equations are not repli-
cated here; they can be found in most publications on dynamo
models. Usually, they are written in dimensionless form, in which
case the system is characterized by four non-dimensional control
parameters. Different combinations of parameters and definitions
are in use. In Table 1 a frequently used set of parameters is defined
and their characteristic values in the Earth’s core and typical values
in current dynamo models are given.

Because of the inability to resolve the very small spatial struc-
tures that occur at realistic parameter values for the Earth’s core,
much more moderate values must be taken in the models for most
control parameters. The Rayleigh number Ra describes the ratio be-
tween the driving buoyancy forces and effects that retard the flow.
In the core it is much larger than the critical value for the onset of
convection, Rac, while models are less supercritical by nearly two
orders of magnitude (Table 1). The discrepancy is by ten orders
of magnitude for the Ekman number E, the ratio of viscous forces
to Coriolis forces. The magnetic Prandtl number Pm, the ratio of
viscosity to magnetic diffusivity, is very small for liquid metals,
but must be set to a value of order one to obtain a self-sustained
dynamo in present models. Only the (hydrodynamic) Prandtl num-
ber Pr, the ratio of viscosity to thermal diffusivity, is of order one in
the core and in dynamo models. In terms of physical parameters,
the viscosity and the thermal diffusivity are far too large in the
models and, in most cases, the rotation rate is too small.

Published dynamo models differ mainly in their values for the
control parameters, in the adopted boundary conditions, and in
the distribution of sources and sinks for the driving buoyancy.
Most models employ mechanically rigid (no-slip) conditions at
the boundaries to the solid mantle and inner core. Based on the
argument that the too large Ekman number combined with the
no-slip condition introduces viscous boundary layers that are far
too thick and should best be avoided altogether, some authors have
advocated the use of stress-free boundaries. In many models con-
vection is driven by imposed fixed temperatures at the inner and
outer boundaries. This condition is only used for simplicity and a
condition of imposed flux is much more realistic, at least for the
upper boundary. For flux conditions the definition of the Rayleigh
number in Table 1 must be modified to that of a flux Rayleigh num-
ber , which is done by expressing the temperature difference DT

across the shell in terms of the heat flux that would be transported
conductively at the given DT. In the models it is often not distin-
guished between thermal and compositional driving of convection.
Equations are usually written in terms of temperature with the
understanding that this can be interchanged with light element
concentration. A non-zero source or sink term in the equation for
temperature/concentration describes possible radiogenic heating
or the heat supplied by the secular cooling of the fluid core or
the mixing of light elements released at the boundary of the grow-
ing inner core into the outer core fluid. For example, in the end-
member model where convection is exclusively driven by the flux
of light elements that are expelled from the growing inner core, a
flux proportional to the inner core growth rate is fixed at the lower
boundary and is balanced by a volumetric sink term that repre-
sents the mixing of the light component into the core fluid, while
zero flux is specified on the outer boundary (e.g. Kutzner and
Christensen, 2000).

Several dimensionless diagnostic numbers can be formed with
the characteristic flow velocity U and magnetic field strength B
in the dynamo (Table 1). The velocity in Earth’s core is estimated
from the geomagnetic secular variation under the assumption that
the magnetic flux at the core surface is approximately frozen into
the moving fluid, which leads to a typical value of 0.5 mm/s
(Holme, 2007). This values applies to the large-scale component
of the flow close to the core–mantle boundary; a plausible value
for the rms velocity including smaller flow scales in the core may
be 1 mm/s. The characteristic field strength inside Earth’s core is
probably in the range 1–4 mT, as will be discussed further below.

The most important diagnostic number is the magnetic Rey-
nolds number Rm, which describes the ratio of magnetic advec-
tion and induction to magnetic diffusion. For a self-sustained
dynamo Rm must exceed a minimum value that is around 40
for rotating spherical shell dynamos (Christensen and Aubert,
2006). The magnetic Reynolds number in the Earth’s core is of
order 1000, safely above the critical limit. The Earth value of
Rm is nonetheless moderate and can be handled in direct
numerical simulations, which distinguishes the geodynamo prob-
lem from that of other cosmic dynamos, where usually Rm is ex-
tremely large. The ability to solve for magnetic induction and
diffusion in Earth’s core directly without parameterizations is
probably a main reason for the success of geodynamo models
(other important points are that the models use the correct
spherical geometry and account for the leading-order role of
rotational forces for the flow).

The hydrodynamic Reynolds number Re is much smaller in the
models than it is in the core where it is of the order109. Therefore
dynamo models miss the small eddies that are expected to exist in
the core. Viscosity plays a role only at length scales in the range of
meters in the core.

Table 1
Dynamo parameters a thermal expansivity, go gravity at core surface, DT superadiabatic temperature contrast across core, j thermal diffusivity, m kinematic viscosity, X rotation
rate, D outer core thickness, g ¼ 1=ðlorÞmagnetic diffusivity with r electrical conductivity and lo magnetic permeability, U characteristic flow velocity, B characteristic magnetic
field strength, q density, Rac is the critical Rayleigh number for onset of convection.

Control parameters

Rayleigh no. Ekman no. Magn. Prandtl no. Prandtl no.

Definition Ra ¼ agoDT=ðX
2DÞ E ¼ m=ðXDÞ2 Pm ¼ m=g Pr ¼ m=j

Core 104Rac 10$15 $ 10$14 10$6 $ 10$5 0.1–1
Models ð1$ 100ÞRac 10$3 $ 10$6 0.1–10 1

Diagnostic numbers

Magn. Reynolds no. Reynolds no. Rossby no. Elsasser no.

Definition Rm ¼ UD=g Re ¼ UD=m Ro ¼ U=ðXDÞ K ¼ B2=ð2logqXÞ
Core 103 109 10$7 0.1–10
Models 40–2000 < 2000 10$2 $ 10$4 0.1–100

158 U.R. Christensen / Physics of the Earth and Planetary Interiors 187 (2011) 157–169

Christensen, PEPI, 2011

We use scaling laws to exptrapolate model values to geophysical values.
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2 dynamo models

Br @CMB, filtered @ ` = 13

M1

M3

Rm Eη Pm rating Lmax

M1 100 2.5 10−4 4 6 64
M3 860 1.25 10−5 2.5 1 133

After Christensen, Aubert, Hulot (EPSL, 2010)
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2 dynamo models

Br @CMB, scale : ±2 mT
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M3
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Surface and volume

Dynamic Magnetic Field Imaging: Aubert, Aurnou, Wicht (GJI, 2008)
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Trajectory in model space
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Sequential assimilation

We perform an analysis each time there is some observation available.
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A 2-step procedure: the Kalman filter

1. Forecast:
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i ,
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i M
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Sequential assimilation
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Optimal interpolation

I Size of the covariance matrix: nx × nx (nx is size of x, typically 106 ).

I Evaluating MPa
i M
† requires O

`
n4

x

´
operations. (nx times more expensive

than a single model step.)

A 2-step procedure:

1. Forecast:

xf
i+1 = Mxa

i ,

Pf
i+1 = MPa

i M
† + Q.

2. Analysis:

xa
i+1 = xf

i+1 + Ki+1

“
yo
i+1 − Hxf

i+1

”
,

Pa
i+1 = (I − Ki+1H) Pf

i+1.

with Ki+1 = Pf
i+1H†i+1

“
Hi+1Pf

i+1H†i+1 + Ri+1

”−1
.
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Optimal interpolation

I Possibility: use a frozen background error covariance matrix Pb.

A 2-step procedure:

1. Forecast:

xf
i+1 = Mxa

i ,

Pf
i+1 = Pb

2. Analysis:

xa
i+1 = xf

i+1 + Ki+1

“
yo
i+1 − Hxf

i+1

”
,

Pa
i+1 = Pb

with Ki+1 = PbH†i+1

“
Hi+1PbH†i+1 + Ri+1

”−1
.
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Structure of the background covariance matrix in 3D

Transport of information from the surface downwards:

CMB poloidal m
agnetic
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Aubert & Fournier, NPG, 2011

NB: several hundreds of samples are needed
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Experiments with synthetic data

Solve a time-dependent assimilation problem:

I Generate synthetic data from model free run over [t0,T ]: here maps of Br

at the top of the core (truncated at ` = 13 and assuming perfect
observations, R = 0)

I Start from t0 using wrong initial conditions (for instance the average
background state)

I Assimilate synthetic observations and correct model trajectory
I Assess quality of assimilation scheme by comparing the known true

dynamo state xt and the estimate bx
I Retrieval of internal structure
I Forecast quality
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Retrieval of internal structure
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Forecast quality

Define the innovation

di = observation − forecast = yo
i −Hxf

i

Involves the first 13 SH degrees of the poloidal field at the core surface.
Forecast quality via the average error

error =
1

Ncycles

X
i

‖di‖2 over 3000 yr

The number of assimilation cycles Ncycles is set by the spacing between two
successive cycles, ∆tcycle. We will take ∆tcycle = 5, 25, 50 and 100 yr.

Our forecast strategies to define xf
i will consist of

1. a no-cast

2. a linear forecast based on the perfectly known SV up to SH degree 8

3. a linear forecast based on the perfectly known SV up to SH degree 13

4. a multivariate OI scheme assimilating Br maps up to SH degree 13
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Forecast results

100 101 102
∆tcycle (yr)

forecast error (×1.7 mT)
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Over long time scales, assimilation provides the best answer.
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Terrestrial matters

It is of interest to elucidate the causes (and
forecast the evolution) of the South Atlantic
Anomaly.

Finlay et al., 11th IGRF, GJI, 2011
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Summary

I Implementation of an optimal interpolation scheme for geomagnetic data
assimilation based on 3D models of the geodynamo

I Synthetic experiments:
I Multivariate statistics help better constrain the internal structure of the core
I Scheme adapted for long-term predictions of the evolution of the large-scale

poloidal field at the top of the core
I On short time scales: linear prediction based on perfectly well-known large

scale SV performs better.
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Challenges ahead

(ANR funded program for 2011-2015,
http://avsgeomag.ipgp.fr)

I Forward modelling: increase code performance (e.g. using GPUs)
I Have time scales in better proportion
I Equatorial dynamics
I large-scale westward drift in a highly supercritical context
I variability on short time scales (waves, etc.): better job than simple linear

extrapolation

I Assimilation methodology
I Incorporate uncertainties in scaling laws
I Retrospective analysis: development of a smoother.
I Highly nonlinear situation: EnKF, implicit particle filters ($$)
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