20t ORAP Forum "High Performance Computing"

MULTISCALE ANALYSIS FOR ITER
SUPERCONDUCTING COILS AND
TUNNEL BEHAVIOUR DURING FIRES:
TWO COMPUTING INTENSIVE
MULTIDISCIPLINARY PROBLEMS

Bernhard Schrefler

University of Padua

December 13, 2006, PARIS



MULTISCALE ANALYSIS FOR ITER SUPERCONDUCTING COILS AND
TUNNEL BEHAVIOUR DURING FIRES: TWO COMPUTING INTENSIVE
MULTIDISCIPLINARY PROBLEMS

Bernhard A. Schrefler, Daniela P. Boso, F. Pesavento
Department of Structural and Transportation Engineering
Faculty of Engineering

University of Padua, ITALY

Marek Lefik, Dariusz Gawin

Chair of Geotechnical Engineering and Engineering Structures
Technical University of todz, POLAND

‘ University of Padua

Ramon Codina, Javier Principe
International Centre for Numerical Methods in Engineering,
Technical University of Catalunya, UPC - Barcelona, Spain

20th ORAP Forum "High Performance Computing® - December 13, 2006, PARIS



ITER will be built at Cadarache
during the next 10 years and
will operate for 20 years.

Overall cost is estimated in

10 GEuro: 50 % carried by the
EU, the other 50% equally
shared among China, India,
Japan, Russia, South Korea,
US.

In the ITER tokamak a plasma
producing 500 MW from | [ ‘
Deuterium Tritium reactions

will be confined by a complex
magnet system, composed of
superconducting coils.

‘ University of Padua
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‘ University of Padua

- International thermonuclear experimental reactor (ITER)

ITER magnet structure consists of three
main systems: a Central Solenoid coil
(CS) composed of six modules, 18
Toroidal Field coils (TF), and 6 Poloidal
Field coils (PF).

CS and TF coils will be manufactured
using Nb3Sn based cables, while for the
PF coils NbTi will be used.

All coils will be wound using cable-in-
conduit conductors (CICC).

The magnet system, including the
related cryogenics, will be the most
expensive item in the whole ITER
budget: up to 30 % of the total cost.
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Multiscale modelling for composites
Including continuum to discrete linkage

INSULAT [ON
SUPERCONDUCT ING
CRBLE

TUBE
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NB3SN multiflamentary composite wires

For practical applications, the superconductor is subdivided
Into fine filaments, which are twisted together and embedded
In a low - resistivity matrix of normal metal (typically: bronze).

« The subdivision into fine filaments is required to
eliminate instabilities in the superconductor known as
flux jumps.

« The filament twisting is introduced to reduce inter-
filament coupling when the wire is subjected to time-
varying fields.

‘ University of Padua

« The low- resistivity matrix is used as a current shunt in
the case of a transition of the filaments to the normal
resistive state, thereby limiting power dissipation and
conductor heating (the resistivity of superconductors in
the normal state is usually quite high).
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Multiscale modelling for composites
Including continuum to discrete linkage

the cable

displacement

Internal structure of Applied force ﬂ Measured

oip
7 7

‘ University of Padua

A\

Scheme of a cell of the superconductor and a sketch of the experimental set-up of the university of Twente (Nijuhuis A & al.
Mechanical and Electrical testing of an ITER CS1 Model Coil Conductor under Transverse Loading in a Cryogenic Press,

Preliminary Report, University of Twente)
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Multiscale modelling for composites
Including continuum to discrete linkage

experimental data
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Force-displacement and equivalent stress-strain in the cable obtained in the experimental tests (University of Twente).
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NB3SN multiflamentary composite wires

Nb,Sn superconducting wires have a critical current density j, that depends on
the magnetic field, the temperature and the strain state ¢ of the superconductor

‘ University of Padua
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A. Godeke, Performance Boundaries in Nb,Sn Superconductors, Ph.D. Thesis, University of
Twente, 2005

20th ORAP Forum "High Performance Computing® - December 13, 2006, PARIS



o 5T Up
Fyxs "

-~ FIRST THREE LEVELS

20th ORAP Forum "High Performance Computing® - December 13, 2006, PARIS



FIRST THREE LEVELS

_

m_ \\ HT
JEEY AR\
AN SR
A

y Y

R

B i

YEEE

-

c clo

o o|s

a0} I|E

20th ORAP Forum "High Performance Computing® - December 13, 2006, PARIS



" A three-scale model for EAS strands

" Macro, meso and micro model
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‘ University of Padua
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SN Effective Effective

barrier meso level micro level Nb3Sn filament
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Mechanical coefficients
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Mechanical coefficients
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EAS strand models: twisted, untwisted, jacket+twisted, jacket+untwisted
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Single strand: comparison with experimental results

Thermal strain g,
Twisted no Jacket
Unwisted no Jacket
Twisted with Jacket

Untwisted with Jacket

Mechanical strain ¢

Twisted no Jacket

‘ University of Padua

Unwisted no Jacket
Twisted with Jacket

Untwisted with Jacket

mech

V¢

Q
C

Unsmearing
Nb3Sn Bronze
-0.0068 -0.0133
-0.0068 -0.0133
-0.0068 -0.0133
-0.0068 -0.0133

Nb3Sn

-0.0028

2ry good agreement \

Bronze

0.0036

-0.00275 0.0037

-0.0080 ) -0.0015
-0.0079  -0.0013

Copper
-0.0152
-0.0152
-0.0152
-0.0152

Copper
0.0055
0.0057
0.0004
0.0006

Steel

-0.0152
-0.0152

with literature values

Steel

0.0004
0.0006

Very good agreement with FZK experimental results
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Single strand: comparison with experimental results
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-~ Hierarchical beam model - numerical results
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‘ University of Padua

View of a 3x3 bundle of strands in their final configuration
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Hierarchical beam model - numerical results

‘ University of Padua
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Comparison with experimental results

Veomp =1 <E>(x) dx
et

strand index in the same
(B, T, ¢) conditions
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g Issue = relation between /<E>(x) dx and
S measured V between voltage taps on jacket
©

Q

Y

@)

-"i‘ Nstrand

g _—
> A

E &g

)

discrete sum over all strand
contributions

Accounting for different contributions [Ekin, 1981]:
€th * €pend (y,z)

Low inter-filament transverse resistivity limit is assumed [A. Nijhuis, 2006]
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‘ University of Padua

- Results (Ib)
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Fire in tunnels: two examples

‘ University of Padua

St.Gotthard fire Tauern fire
» Hazards for human beings
= Economic difficulties

» Huge repair costs

20th ORAP Forum "High Performance Computing® - December 13, 2006, PARIS



Critical temperature & Critical point

. Physical Model:

~ Phases of moisture & inner structure of concrete porosity

Pressure

‘ University of Padua
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MATHEMATICAL MODEL FOR CONCRETE:
Macroscopic balance equations

Dry air mass balance equation
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MATHEMATICAL MODEL FOR CONCRETE:
Macroscopic balance equations

Energy balance equation (for whole system)

®
aT W, ,W = . .
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Fire tests of HPC elements

Spalling of the C-60 unloaded column

‘ University of Padua
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Sqguare column subjected to ISO-Fire

Temperature & relative humidity arfter 20 min. of fire
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C-60 concrete
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Sqguare column subjected to ISO-Fire

Vvapour pressure & total damaage after 20 min. of fire

‘ University of Padua
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¢ 9.2058+05 .99
Ia.1azae+05 Io.ss
- 7.1696e+045 QT
- 6.13632405 066
"B 1141e+046 - 0.66
r 4.0813e+06 - (0.43999
306862105 - 0.32999
20459e+06 021993
I 1.0231 405 Io.msss
y 4929 Yy 0
Zn x i z
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Fire in tunnels: two examples

St.Gotthard fire Tauern fire

‘ University of Padua

» Hazards for human beings
= Economic difficulties

» Huge repair costs
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Fire in tunnels: phenomena involved

Heat transfer:

Thermal radiation with media participation
Presence of smoke, soot, dust particles
Conduction through tunnel vault
Convection due to the flow movement

Combustion processes:
Volumetric heat source
Eddy break-up

Thermo-fluid-dynamics:
Computational Fluid Dynamics
Turbulent flows
Heat generation / sink

‘ University of Padua

Structural behaviour of the concrete:
Multiphase porous material model
High temperature gradients
Spalling phenomena
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Fire in tunnels: heat balance

Heat transfer

within the fluid Balance at the tunnel vault

conduction

S~

emission

c convection

absorption

absorption
- 7 \
1§ transrhission

emissi ¢ .
emission

‘ University of Padua

v'Convection coefficient evaluation by means
of CFD calculations without radiative fluxes

AX, 2&}
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| - Thermo-Fluid Dynamics

v'Low Mach number flow

@ v Compressible and Newtonian fluid
% v'Coupling with the convection-diffusion-reaction equation
Q(t_’ Radiative fluxes
( Dp
IS —Z4+pVu=3S5,
N Dt
= Du
B =V (2ue f
X po, FVP=V-(2pe () + _
= DT Dp
S |erp; BT 5, =V (BVT) +2pe' () : &' (W) + V-gr + St

= Continuity equation /

Volumetric heat

= Linear momentum balance equation TS

= Convection-diffusion-reaction equation
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- Fire in tunnels: heat balance

" Radiation with media participation

v’ Heat transfer by radiation affects the temperature distribution both within
the fluid and the thermal balance at the wall.

v Media participation, e.g. absorption, scattering.

‘ University of Padua
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Available codes

Concrete as multiphase material

COMES-HTC

High Temperature Concrete Spalling
University of Padua- Italy

FIT tool

Faust and Hitecosp
Coupled Via Master Code

‘ University of Padua

Thermo - fluid - dynamics
FAUST

Flow Analysis Using Stabilization Techniques
Polytechnic of Barcelona- Spain
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- Fire In Tunnel Tool

Master code

‘ University of Padua

AAA A

Data transfer performed by means of:

MPI (Message Passing Interface)
free library standard
http://www-unix.mcs.anl.gov/mpi/
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;‘F:_ r'~:- . Level of coupling
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Internal iteration loop
External iteration loop
Time iteration loop
MPI data transfer
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3D to 2D coupling
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Fluid temperature evolution
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Fluid temperature evolution
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Fluid velocity evolution
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Fluid velocity evolution
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Total damage Distribution

5 min
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‘ University of Padua
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CONCLUSIONS

The two chosen applications show that multi-
disciplinary problems can be solved if high
performance computing is consistently applied.

However the collaboration of experts of the
different involved fields is fundamental to obtain
significant solutions.

Scientific Computing can validly substitute
expensive experiments

‘ University of Padua
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