<u>Calculs de hautes performances sur le Earth Simulator :</u> <u>Un pas vers une meilleure prédictions des ouragans</u>

Michel Desgagné, Gilbert Brunet

Recherche en Prévision Numérique (RPN) Meteorological Service of Canada Québec, Canada

Collaborators:

Earth Simulator Center: W. Ohfuchi McGill University: Y. Martinez and P. Yau

19e Forum de l'ORAP, Paris (France), 30 Mars 2006

Acknowledgement to CFCAS

Environnement Canada

How much resolution do we need?

- 1) Introduction
- 2) Wave activity diagnostics of a simulated hurricane
- 3) A grand challenge on the Earth Simulator: A Canada -Japan collaboration on high impact weather
- 4) Reality check

Unified system of equations equations

H2O

$$\frac{d\mathbf{v}}{dt} + \left[\nabla - \frac{N_*^2}{g}\mathbf{k}\right]P - B\mathbf{k} = R_V$$
$$\frac{dB}{dt} + N_*^2 w = R_B$$
$$\frac{d}{dt}\left(\frac{P}{c_*^2}\right) + \nabla \cdot \mathbf{v} - \frac{g}{c_*^2} w = R_P$$

Ref: Girard et Al. 2005: MWR

A major technological transfer in 2005-06 at MSC: GLOBAL GEM GRID AT 35km with improved physics and cloud representation

Grid: 800 x 600 x 58 (~ 33 Km resolution) Operational implementation scheduled for spring 2006 on ~ 300 PEs Will average 10 min/day

Environnement Canada

Instantaneous precipitation rate (mm/hr) for the Operational GEM model A 5 day animation (20/01/2002 to 25/01/2002) (HR=100km, TR=45 min.)

Acknowledgement to M. Roch and S. Bélair

Environnement Canada

Instantaneous precipitation rate (mm/hr) for the Meso-Global GEM model A 5 day animation (20/01/2002 to 25/01/2002) (HR=33km, TR= 15 min.)

Acknowledgement to M. Roch and S. Bélair

Environnement Canada

Typhoon FLO - Septembre 1990 2km 16-30 H Forecast of <u>Relative Vorticity at 20m</u>

<u>COMPARE III Workshop</u> Tokyo, Japan December 13-15, 1999

max= 700-800 e⁻⁵ sec⁻¹ frame every hour

Environnement Canada

2) Wave activity diagnostics of a simulated hurricane

Background and Motivation

- Can-we characterize and quantify the dynamics and significance of the spiral bands?
- Recent studies have shown that inner spiral bands have characteristics of vortex Rossby waves
- Vortex Rossby waves (VRW) and gravity waves are mixed (Rossby number [U/Lf] is not small)
- Apply Empirical Normal Mode (ENM) method to separate the waves to isolate the effect of VRW on a simulated hurricane -Chen and Yau 2001 (6 km grid size, 24 h simulation sampled every 2 minutes)

Chen, Brunet and Yau 2003: Spiral Bands in a Simulated Hurricane. Part II: Wave Activity Diagnostics. Journal of Atmospheric Sciences: Vol. 60, No. 10, pp. 1239–1256.

PV at 6 km

Environnement Canada

Basic State (24 hour mean)

 $\gamma > 0$

Potential Vorticity

Potential Vorticity Radial Gradient

Environnement Canada

Period and variance (%) of most important ENMs that contribute to 47% of the total variance

Wave number	ENM number	Period (hour)	Variance (%)
1	1	2.4	11
1	2	2.4	8
1	720	1.6	3
1	721	1.6	4
2	1	1.0	8
2	2	1.0	7
2	720	1.1	3
2	721	1.1	3

• NWP models with timestep less than one hour should start to resolve properly Vortex Rossby waves

Hurricane Isabel north of Puerto Rico (on the 2003/09/12, 12:45 – 14:45 animation) GOES 12 visible image - Pixel size:1km

VRW angular momentum transfer leads to 1-2 m/s per hour acceleration of the mean flow

Acknowledgement to Y. Chartier

Environnement Canada

Conclusions from Chen et al.

- Analysis shows wavenumber 1 and 2 leading ENMs are vortex Rossby wave modes
- The divergence (1~2 m/s per hour) of EP fluxes indicates that vortex Rossby waves play an important role in the intensification of the simulated hurricane
- Wave breaking signature:

i) The simulation is too dissipative (6km)ii) How generic and realistic this is?

A full life cycle simulation that resolves convective scale and VRW is needed (1 km).

<u>**RPN</u>**: Michel Desgagné, Gilbert Brunet, Michel Valin</u> arge

E arth

S imulator

with

A tmospheric

C omputation on the

ESC: Wataru Ohfuchi

McGill U.: Peter Yau, John Gyakum, Yosvany Martinez

<u>U. of Tokyo</u>: Hiroshi Niino, Yuki Fukurawa

<u>U. of Albany:</u> Ron McTaggart-Cowan

Others: Claude Girard, Pierre Pellerin Robert Benoit, Mike Montgomrey

The Earth Simulator Center

The Canadian MC2 Model v4.9.8 Mesoscale Compressible Community Model

- Nonhydrostatic compressible LAM
- <u>Semi-implicit</u> formulation with stationary isothermal hydrostatic basic state
- Fully 3D <u>semi-Lagrangian</u> advection (leapfrog)
- Terrain following heights vert. coordinate
- Staggering: Arakawa C Tokioka B
- Minimal residual Krylov GCR/GMRES solver / 1D Jacobi/3D ADI line relaxation precond.
- Davies type lateral gravity-wave absorbers
- Full CMC/RPN physics v4.1 including:
 - many combinations of convective and large-scale condensation schemes (3 microphysics schemes)
 - TKE PBL + Force-restore/ISBA/CLASS surface schemes
 - Solar and infrared radiation scheme

36 TF on some benchmarks (640 nodes) 27 TF with AFES (640 nodes – 67% of peak) (10 km global climate simulation)

13 TF with MC2 (495 nodes)

(1 km - 11000 x 8640 x 51 grid)

22 x 180 processor topology (3.2 GF/Pe – 40% of peak)

Environnement Canada

Environment Canada

 $E_n = \frac{S_n}{2} \ge 0.5$

Parallelization Efficiency > 0.5 on a fixe problem size

Parallelization Scalability

 $S_n = \frac{T_1}{T_n}$ $\alpha =$ п

n

Amdahl's law Parallelization ratio

A Grand Challenge project on the Earth Simulator

Modelling the Full Lifecycle of Hurricane Earl at 1km Resolution with the Canadian MC2 Model

Desgagne, Ohfuchi, Brunet, Yau, McTaggart-Cowan and M. Valin, 2004: Large Atmospheric Computation on the Earth Simulator: A report on the LACES project. Annual Report of the Earth

Simulator Center (April 2003–March 2004), 225-227. The Earth Simulator Center, Yokohama, Japan.

Environnement Canada

Grid Strategy for EARL on the ES: 3 Stages Rotated Mercator grids

Time strategy for the Simulation of the Full Lifecycle of Hurricane EARL on the ES

Data: Nearing Catastrophe

	Full domain 11000 x 8640	Reduced domain 3000 x 2000	Full Domain Averaged 4 DX	Full Domain Averaged 10 DX
10 min		3D: U,V,W,T,P,HU, QN,QP,QI,QG		3D: U,V,W,T,P,HU, QN,QP,QI,QG
15 min	2D: QR, PN, RT, PR, FC, FV			
30 min			3D: U,V,W,T,P,HU, QN,QP,QI,QG	
	8 x 64 files 49 GBytes	24 x 12 files 151 GBytes	4 x 64 files 29 GBytes	4 x 64 files 14 GBytes

Grand total: 1300 files, 243 GBytes/4H → 4.7 TB for first 78H

Database currently being assembled/maintained at RPN All data compressed to 16 bits

Environnement Canada

Relative Vorticity at 950 hPa (10km)

Relative Vorticity 950 hPa from 10km run

12Z 01/09 to 00Z 04/01

Environnement Canada

Specific Humidity 325 Meters from 1 km run 15Z 01/09 to 00Z 03/09

Time/Longitude: 250-mb Meridional Wind (m s⁻¹); 55-40N.

Reality check

- A full lifecycle reference simulation of hurricane Earl on the Earth Simulator for process studies. Order 1 wall clock hour of computation / 1 hour of simulation on 4000 vector processors.
- ES like computing power not available soon in Operational centers
- NWP hurricane strategy at the Meteorological Service of Canada:
 - better hurricane track predictions with global-meso GEM and 4D-VAR
 - 2-way nested vortex following LAM configuration to obtain proper precipitation and intensity that depends on angular momentum transport, hence high resolution

Pushing back the limits of predictability Increasing the accuracy of high-impact weather forecasts

Societal Applications

THE END Thank You !

Environnement Canada