
Prepared by
Benoit MATHIEU

CEA/DEN/DER/SSTH/LMDL

Tests TRIO-U on IBM/Blue Gene

Code TRIO-U
Unsteady 3D code for general CFD purposes

02 / 2006

Testing TRIO-U

Date of tests : 10-2005 03-2006

Centre : ANL (1024 nodes ; ie 2048 cores)

Source code provided

Source transferred to ANL

Distant compilation and tests

Deletion of source code on ANL machine

Protocol for tests

Background from the tests

Compilation
Trio_U compiled without any code modification

Numerical Platon not available (RPC not supported)

Job execution
Occasional machine failure, often due to file-system problems (hardware and
software), machine was otherwise very responsive (interactive tests up to
128 nodes)

Hardware architecture does not support debugging

No virtual memory and only 512 MB of memory per node

Computation
350.000 mesh elements per node (minimize communication/computation ratio)

Structured mesh, incompressible 3D Navier-Stokes (implicit pressure solver)

Benchmark environment

TRIO-U’s Scalability

Scaling tests

“Weak scaling” test

problem size increased like the number of processors

maximum size treated : 7003 (343 millions) pour 2048 cores

parallel efficiency constant for any number of nodes between 16 and 512
(estimated figures: the test case does not fit in memory on a single cpu)

55% (virtual node mode = two processors per node are used)

65% (coprocessor mode = only one processor per node is used).

(55% means that with N processors, the result is obtained 0.55*N times faster than
with one processor. Speedup is 55 with 100 processors or 550 with 1000 processors)

“Strong scaling” test

constant problem size, increasing processor number

moderate performance due to communication overhead

Benchmark results

TRIO-U’s Speed Up

Performance analysis:
Rather low network bandwidth (measured 130MB/s/processor), but very good

scalability

Parallel efficiency of 55% (dual core) or 65% (single core) is due to:

10 - 20% of time spent in communication in optimal computation (maximize
number of mesh elements per processor) => 20% less efficiency

parallel implicit solver is not perfectly scalable => 15% less efficiency

memory bandwidth shared between two processors in dual core mode => 10%
less efficiency in “virtual node” mode.

Compiler does probably not produce optimal code: sequential code runs two times
slower than on a Pentium 4 2Ghz processor. The code could probably run two times
faster on BGL with appropriate optimization.

Machine performance analysis

Conclusions:

If code is well optimized, network bandwidth will become a limiting factor.
Using BGL optimally implies careful code and communication optimization.

Simplified machine architecture: no debug, no complex code (no RPC, …)

Network bandwidth and cpu speed are well balanced.

Memory per processor (256MB in dual core operation) is quite low for
complex codes (Trio_U executable alone uses 50MB).

Conclusion on BGL architecture

