Middleware for Grid computing: experiences using the VTHD Network (2.5 Gbit/s)

Frédéric DESPREZ ENS-Lyon/INRIA & Thierry PRIOL IRISA/INRIA

Contents:

- The RNRT VTHD project
- How to exploit a high bandwidth network transparently ?
 - High-performance distributed objects platform (Paco/PADICO)
 - Global address space for the Grid (MOME)
- Computational servers on a High Speed WAN (DIET)

VTHD project, *"Vraiment Tr*ès *Haut Débit"*

Coordinator: Christian Guillemot (FTR&D) christian.guillemot@francetelecom.com

http://www.vthd.org

RINRIA

france telecon

École nationale supérieure des télécommunications

Project organisation

SP1: Platform deployment (FTR&D, INRIA, ENST, ENST-Br, INT, EURECOM)

• IP engineering and WDM, Back-office IP, « best-effort » IPv4 service

<u>SP2</u>: Flow and congestion control (<u>INRIA</u>, FTR&D)

• TCP, Web traffic genetation and monitoring (WAGON/ INRIA software).

SP3: Multi-service high-bandwidth platform (ENST, ENST-Br, INT, FTR&D)

• QoS service class, RPV service, Tera-routers.

<u>SP4</u>: Training and medical applications (ENST, INRIA, ENST-Br, INT)

- Contents server, remote training (ENST-Br,INT,ENST).
- Medical « white board » , Data transmission associated with the use of medical robots (INRIA, HEGP).

<u>SP5</u>: Distributed computing and visualisation resources (<u>INRIA</u>)

• Grid computing, distributed numerical simulation, remote visualisation.

SP6: Distributed cache systems (EURECOM, ENST, INRIA)

• Data localisation, benchmarking WAGON.

VTHD network

VTHD computational grid

Context of the experiments

□ At the beginning of the project

 « 2.5 gigabits is probably too much for PCs that are connected to the VTHD network with 100 Mbits/s Ethernet interfaces ... »

Goal of the research works

- Grid = cluster of cluster
- Design middleware that allow transparent exploitation of high-bandwidth network
 - For scientific applications (parallel codes)

Principle

Exploit data distribution within a parallel code to exploit high-bandwidth networks

Distributed objects oriented platforms

Mapping of components onto resources

The middleware should adapt itself to the available networking resources

CORBA : a middleware for scientific computing

- CORBA: Common Object Request Broker Architecture
- Open standard for distributed object computing by the OMG
 - Software bus, object oriented
 - Remote invocation mechanism
 - Hardware, operating system and programming language independence
 - Vendor independence (interoperability)
- Problems to face
 - Performance issues (not true)
 - Poor integration of high performance computing environments

Parallel CORBA object concept

Goal

Encapsulation of parallel codes into CORBA objects

Scalable "connection" between parallel CORBA objects

□ Submitted to the OMG as a response to a RFI

VTHD Experiment

Protocols

- ♦ Two MPI codes
- Encapsulation using PaCO++

VTHD Performance

- 11 nodes to 11 nodes
- ◆ 826 Mb/s (103 MB/s)
- ◆ P2P: 75 Mb/s (9.4 MB/s)
- Near the switch limit

Cluster Performance

- ♦ 8 nodes to 8 nodes (Myrinet 2000)
- ◆ 12 Gbit/s (1.5 GB/s)
- ◆ P2P: 1.5 Gbit/s (187 MB/s)

Cluster performance

PADICO: an Open Integration platform for communicating middleware and runtimes

Global address space for the Grid (MOME)

Goal

♦ To transfer data between DSM-based parallel codes

VTHD Experiment

The JACO3 Environment

